• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Jun 1, 1993; 90(11): 4932–4936.
PMCID: PMC46627

Gene amplification in Rhizobium: identification and in vivo cloning of discrete amplifiable DNA regions (amplicons) from Rhizobium leguminosarum biovar phaseoli.

Abstract

A genetic element that allows the positive selection of different genomic rearrangements was used to analyze DNA amplification in Rhizobium leguminosarum biovar phaseoli. Discrete amplifiable DNA regions (amplicons) were detected in different regions of the genome of the model strain CFN42, including the chromosome and several large plasmids. Amplicons were mobilized into Escherichia coli using a genetic approach that involves the introduction of an origin of replication active in E. coli and an origin of conjugal transfer into the amplifiable DNA regions of the Rhizobium genome. The strategy can be a valuable tool for studies on genome organization and function. We propose that amplicons define a structural characteristic of the genome that may play an important biological role.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Hahn M, Hennecke H. Mapping of a Bradyrhizobium japonicum DNA Region Carrying Genes for Symbiosis and an Asymmetric Accumulation of Reiterated Sequences. Appl Environ Microbiol. 1987 Sep;53(9):2247–2252. [PMC free article] [PubMed]
  • Flores M, González V, Pardo MA, Leija A, Martínez E, Romero D, Piñero D, Dávila G, Palacios R. Genomic instability in Rhizobium phaseoli. J Bacteriol. 1988 Mar;170(3):1191–1196. [PMC free article] [PubMed]
  • Brom S, García de los Santos A, de Lourdes Girard M, Dávila G, Palacios R, Romero D. High-frequency rearrangements in Rhizobium leguminosarum bv. phaseoli plasmids. J Bacteriol. 1991 Feb;173(3):1344–1346. [PMC free article] [PubMed]
  • Romero D, Brom S, Martínez-Salazar J, Girard ML, Palacios R, Dávila G. Amplification and deletion of a nod-nif region in the symbiotic plasmid of Rhizobium phaseoli. J Bacteriol. 1991 Apr;173(8):2435–2441. [PMC free article] [PubMed]
  • Simon R. High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol Gen Genet. 1984;196(3):413–420. [PubMed]
  • Eckhardt T. A rapid method for the identification of plasmid desoxyribonucleic acid in bacteria. Plasmid. 1978 Sep;1(4):584–588. [PubMed]
  • Rigby PW, Dieckmann M, Rhodes C, Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. [PubMed]
  • Segovia L, Piñero D, Palacios R, Martínez-Romero E. Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum. Appl Environ Microbiol. 1991 Feb;57(2):426–433. [PMC free article] [PubMed]
  • Quinto C, De La Vega H, Flores M, Leemans J, Cevallos MA, Pardo MA, Azpiroz R, De Lourdes Girard M, Calva E, Palacios R. Nitrogenase reductase: A functional multigene family in Rhizobium phaseoli. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1170–1174. [PMC free article] [PubMed]
  • Brom S, Martinez E, Dávila G, Palacios R. Narrow- and Broad-Host-Range Symbiotic Plasmids of Rhizobium spp. Strains That Nodulate Phaseolus vulgaris. Appl Environ Microbiol. 1988 May;54(5):1280–1283. [PMC free article] [PubMed]
  • Flores M, González V, Brom S, Martínez E, Piñero D, Romero D, Dávila G, Palacios R. Reiterated DNA sequences in Rhizobium and Agrobacterium spp. J Bacteriol. 1987 Dec;169(12):5782–5788. [PMC free article] [PubMed]
  • Figurski DH, Helinski DR. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1648–1652. [PMC free article] [PubMed]
  • Girard ML, Flores M, Brom S, Romero D, Palacios R, Dávila G. Structural complexity of the symbiotic plasmid of Rhizobium leguminosarum bv. phaseoli. J Bacteriol. 1991 Apr;173(8):2411–2419. [PMC free article] [PubMed]
  • Schimke RT. Gene amplification in cultured cells. J Biol Chem. 1988 May 5;263(13):5989–5992. [PubMed]
  • Petes TD, Hill CW. Recombination between repeated genes in microorganisms. Annu Rev Genet. 1988;22:147–168. [PubMed]
  • Goldberg I, Mekalanos JJ. Effect of a recA mutation on cholera toxin gene amplification and deletion events. J Bacteriol. 1986 Mar;165(3):723–731. [PMC free article] [PubMed]
  • Anderson RP, Roth JR. Tandem genetic duplications in phage and bacteria. Annu Rev Microbiol. 1977;31:473–505. [PubMed]
  • Sonti RV, Roth JR. Role of gene duplications in the adaptation of Salmonella typhimurium to growth on limiting carbon sources. Genetics. 1989 Sep;123(1):19–28. [PMC free article] [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...