• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. May 15, 1993; 90(10): 4480–4484.
PMCID: PMC46535

Identification of human endogenous retroviruses with complex mRNA expression and particle formation.

Abstract

Retroviruses comprise strains with considerable disease potential in animals and humans. In addition to exogenous strains transmitted horizontally, endogenous proviruses are transmitted through the germ line. Some of these endogenous retroviruses can be pathogenic in mice and possibly in other animal species. They may also be considered as mobile genetic elements with the potential to produce mutations. In humans, genomic DNA contains numerous endogenous retroviral sequences detected by their partial relatedness to animal retroviruses. However, all proviruses sequenced so far have been found to be defective. In this communication, we describe the expression of a family of human endogenous retrovirus sequences (HERV-K) in GH cells, a teratocarcinoma cell line producing the human teratocarcinoma-derived retrovirus (HTDV) particles previously described by us. Four viral mRNA species could be identified, including a full-length mRNA. The other three subgenomic mRNAs are generated by single or double splicing events. This expression pattern is reminiscent of the more complex control of virus gene regulation observed, for example, with lenti- or spumavirus strains, although HERV-K shows no sequence homology to human T-lymphotropic virus or human immunodeficiency virus. Sequence analysis of expressed HERV-K genomes revealed non-defective gag genes, a prerequisite for particle formation. Open reading frames were also observed in pol and env. Antisera raised against recombinant gag proteins of HERV-K stained HTDV particles in immunoelectron microscopy, linking them to the HERV-K family.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Marrack P, Kushnir E, Kappler J. A maternally inherited superantigen encoded by a mammary tumour virus. Nature. 1991 Feb 7;349(6309):524–526. [PubMed]
  • Larsson E, Kato N, Cohen M. Human endogenous proviruses. Curr Top Microbiol Immunol. 1989;148:115–132. [PubMed]
  • Leib-Mösch C, Brack-Werner R, Werner T, Bachmann M, Faff O, Erfle V, Hehlmann R. Endogenous retroviral elements in human DNA. Cancer Res. 1990 Sep 1;50(17 Suppl):5636S–5642S. [PubMed]
  • Kato N, Pfeifer-Ohlsson S, Kato M, Larsson E, Rydnert J, Ohlsson R, Cohen M. Tissue-specific expression of human provirus ERV3 mRNA in human placenta: two of the three ERV3 mRNAs contain human cellular sequences. J Virol. 1987 Jul;61(7):2182–2191. [PMC free article] [PubMed]
  • Cohen M, Kato N, Larsson E. ERV3 human endogenous provirus mRNAs are expressed in normal and malignant tissues and cells, but not in choriocarcinoma tumor cells. J Cell Biochem. 1988 Feb;36(2):121–128. [PubMed]
  • Rabson AB, Steele PE, Garon CF, Martin MA. mRNA transcripts related to full-length endogenous retroviral DNA in human cells. Nature. 1983 Dec 8;306(5943):604–607. [PubMed]
  • Gattoni-Celli S, Kirsch K, Kalled S, Isselbacher KJ. Expression of type C-related endogenous retroviral sequences in human colon tumors and colon cancer cell lines. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6127–6131. [PMC free article] [PubMed]
  • La Mantia G, Maglione D, Pengue G, Di Cristofano A, Simeone A, Lanfrancone L, Lania L. Identification and characterization of novel human endogenous retroviral sequences prefentially expressed in undifferentiated embryonal carcinoma cells. Nucleic Acids Res. 1991 Apr 11;19(7):1513–1520. [PMC free article] [PubMed]
  • Keydar I, Ohno T, Nayak R, Sweet R, Simoni F, Weiss F, Karby S, Mesa-Tejada R, Spiegelman S. Properties of retrovirus-like particles produced by a human breast carcinoma cell line: immunological relationship with mouse mammary tumor virus proteins. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4188–4192. [PMC free article] [PubMed]
  • Ono M, Kawakami M, Ushikubo H. Stimulation of expression of the human endogenous retrovirus genome by female steroid hormones in human breast cancer cell line T47D. J Virol. 1987 Jun;61(6):2059–2062. [PMC free article] [PubMed]
  • Wilkinson DA, Freeman JD, Goodchild NL, Kelleher CA, Mager DL. Autonomous expression of RTVL-H endogenous retroviruslike elements in human cells. J Virol. 1990 May;64(5):2157–2167. [PMC free article] [PubMed]
  • Kato N, Shimotohno K, VanLeeuwen D, Cohen M. Human proviral mRNAs down regulated in choriocarcinoma encode a zinc finger protein related to Krüppel. Mol Cell Biol. 1990 Aug;10(8):4401–4405. [PMC free article] [PubMed]
  • Kalter SS, Helmke RJ, Heberling RL, Panigel M, Fowler AK, Strickland JE, Hellman A. Brief communication: C-type particles in normal human placentas. J Natl Cancer Inst. 1973 Apr;50(4):1081–1084. [PubMed]
  • Bronson DL, Fraley EE, Fogh J, Kalter SS. Induction of retrovirus particles in human testicular tumor (Tera-1) cell cultures: an electron microscopic study. J Natl Cancer Inst. 1979 Aug;63(2):337–339. [PubMed]
  • Boller K, Frank H, Löwer J, Löwer R, Kurth R. Structural organization of unique retrovirus-like particles budding from human teratocarcinoma cell lines. J Gen Virol. 1983 Dec;64(Pt 12):2549–2559. [PubMed]
  • Löwer J, Wondrak EM, Kurth R. Genome analysis and reverse transcriptase activity of human teratocarcinoma-derived retroviruses. J Gen Virol. 1987 Nov;68(Pt 11):2807–2815. [PubMed]
  • Löwer R, Löwer J, Frank H, Harzmann R, Kurth R. Human teratocarcinomas cultured in vitro produce unique retrovirus-like viruses. J Gen Virol. 1984 May;65(Pt 5):887–898. [PubMed]
  • Löwer R, Löwer J, Tondera-Koch C, Kurth R. A general method for the identification of transcribed retrovirus sequences (R-U5 PCR) reveals the expression of the human endogenous retrovirus loci HERV-H and HERV-K in teratocarcinoma cells. Virology. 1993 Feb;192(2):501–511. [PubMed]
  • Callahan R, Drohan W, Tronick S, Schlom J. Detection and cloning of human DNA sequences related to the mouse mammary tumor virus genome. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5503–5507. [PMC free article] [PubMed]
  • May FE, Westley BR. Structure of a human retroviral sequence related to mouse mammary tumor virus. J Virol. 1986 Nov;60(2):743–749. [PMC free article] [PubMed]
  • Deen KC, Sweet RW. Murine mammary tumor virus pol-related sequences in human DNA: characterization and sequence comparison with the complete murine mammary tumor virus pol gene. J Virol. 1986 Feb;57(2):422–432. [PMC free article] [PubMed]
  • Ono M. Molecular cloning and long terminal repeat sequences of human endogenous retrovirus genes related to types A and B retrovirus genes. J Virol. 1986 Jun;58(3):937–944. [PMC free article] [PubMed]
  • Ono M, Yasunaga T, Miyata T, Ushikubo H. Nucleotide sequence of human endogenous retrovirus genome related to the mouse mammary tumor virus genome. J Virol. 1986 Nov;60(2):589–598. [PMC free article] [PubMed]
  • Baier M, Behr E, Kurth R, König H. Cloning and expression of the complete SIVagm pol region in E. coli. Purification and partial characterization of the reverse transcriptase. Arzneimittelforschung. 1990 Nov;40(11):1284–1287. [PubMed]
  • LUFT JH. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. [PMC free article] [PubMed]
  • Tokuyasu KT, Singer SJ. Improved procedures for immunoferritin labeling of ultrathin frozen sections. J Cell Biol. 1976 Dec;71(3):894–906. [PMC free article] [PubMed]
  • Tokuyasu KT, Dutton AH, Geiger B, Singer SJ. Ultrastructure of chicken cardiac muscle as studied by double immunolabeling in electron microscopy. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7619–7623. [PMC free article] [PubMed]
  • Roberts JD, Bebenek K, Kunkel TA. The accuracy of reverse transcriptase from HIV-1. Science. 1988 Nov 25;242(4882):1171–1173. [PubMed]
  • Tindall KR, Kunkel TA. Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry. 1988 Aug 9;27(16):6008–6013. [PubMed]
  • Manns A, König H, Baier M, Kurth R, Grosse F. Fidelity of reverse transcriptase of the simian immunodeficiency virus from African green monkey. Nucleic Acids Res. 1991 Feb 11;19(3):533–537. [PMC free article] [PubMed]
  • Siomi H, Shida H, Nam SH, Nosaka T, Maki M, Hatanaka M. Sequence requirements for nucleolar localization of human T cell leukemia virus type I pX protein, which regulates viral RNA processing. Cell. 1988 Oct 21;55(2):197–209. [PubMed]
  • Muranyi W, Flügel RM. Analysis of splicing patterns of human spumaretrovirus by polymerase chain reaction reveals complex RNA structures. J Virol. 1991 Feb;65(2):727–735. [PMC free article] [PubMed]
  • Mergia A, Shaw KE, Pratt-Lowe E, Barry PA, Luciw PA. Identification of the simian foamy virus transcriptional transactivator gene (taf). J Virol. 1991 Jun;65(6):2903–2909. [PMC free article] [PubMed]
  • Weeks KM, Ampe C, Schultz SC, Steitz TA, Crothers DM. Fragments of the HIV-1 Tat protein specifically bind TAR RNA. Science. 1990 Sep 14;249(4974):1281–1285. [PubMed]
  • Malim MH, Cullen BR. HIV-1 structural gene expression requires the binding of multiple Rev monomers to the viral RRE: implications for HIV-1 latency. Cell. 1991 Apr 19;65(2):241–248. [PubMed]
  • Berger J, Aepinus C, Dobrovnik M, Fleckenstein B, Hauber J, Böhnlein E. Mutational analysis of functional domains in the HIV-1 Rev trans-regulatory protein. Virology. 1991 Aug;183(2):630–635. [PubMed]
  • Calnan BJ, Tidor B, Biancalana S, Hudson D, Frankel AD. Arginine-mediated RNA recognition: the arginine fork. Science. 1991 May 24;252(5009):1167–1171. [PubMed]
  • Mueller-Lantzsch N, Sauter M, Weiskircher A, Kramer K, Best B, Buck M, Grässer F. Human endogenous retroviral element K10 (HERV-K10) encodes a full-length gag homologous 73-kDa protein and a functional protease. AIDS Res Hum Retroviruses. 1993 Apr;9(4):343–350. [PubMed]
  • Schwartz S, Felber BK, Benko DM, Fenyö EM, Pavlakis GN. Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. J Virol. 1990 Jun;64(6):2519–2529. [PMC free article] [PubMed]
  • van Ooyen AJ, Michalides RJ, Nusse R. Structural analysis of a 1.7-kilobase mouse mammary tumor virus-specific RNA. J Virol. 1983 May;46(2):362–370. [PMC free article] [PubMed]
  • Seiki M, Hattori S, Hirayama Y, Yoshida M. Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3618–3622. [PMC free article] [PubMed]
  • Lania L, Di Cristofano A, Strazzullo M, Pengue G, Majello B, La Mantia G. Structural and functional organization of the human endogenous retroviral ERV9 sequences. Virology. 1992 Nov;191(1):464–468. [PubMed]
  • Wilkinson DA, Freeman JD, Goodchild NL, Kelleher CA, Mager DL. Autonomous expression of RTVL-H endogenous retroviruslike elements in human cells. J Virol. 1990 May;64(5):2157–2167. [PMC free article] [PubMed]
  • Skowronski J, Singer MF. Expression of a cytoplasmic LINE-1 transcript is regulated in a human teratocarcinoma cell line. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6050–6054. [PMC free article] [PubMed]
  • Moore R, Dixon M, Smith R, Peters G, Dickson C. Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: two frameshift suppression events are required for translation of gag and pol. J Virol. 1987 Feb;61(2):480–490. [PMC free article] [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • Gene
    Gene
    Gene links
  • MedGen
    MedGen
    Related information in MedGen
  • Nucleotide
    Nucleotide
    Published Nucleotide sequences
  • Protein
    Protein
    Published protein sequences
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...