• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Mar 15, 1993; 90(6): 2330–2334.
PMCID: PMC46080

Bacillus subtilis sigma B is regulated by a binding protein (RsbW) that blocks its association with core RNA polymerase.

Abstract

sigma B is a secondary sigma factor of Bacillus subtilis. RNA polymerase containing sigma B transcribes a subset of genes that are expressed after heat shock or the onset of the stationary phase of growth. Three genes (rsbV, rsbW, and rsbX), cotranscribed with the sigma B structural gene (sigB), regulate sigma B-dependent gene expression. RsbW is the primary inhibitor of this system with the other gene products acting upstream of RsbW in the sigma B regulatory pathway. Evidence is now presented that RsbW inhibits sigma B-dependent transcription by binding to sigma B and blocking the formation of a sigma B-containing RNA polymerase holoenzyme. Antibodies specific for either RsbW or sigma B will coprecipitate both proteins from crude cell extracts. This is not due to the presence of both proteins on RNA polymerase. Western blot analysis of B. subtilis extracts that had been fractionated by gel-filtration chromatography revealed a single peak of RsbW that did not coelute with RNA polymerase and two peaks of sigma B protein: one that eluted with RNA polymerase and a second that overlapped the fractions that contained RsbW. Reconstitution experiments were performed in which partially purified sigma B and RsbW were added to core RNA polymerase and tested for their ability to influence the transcription of a sigma B-dependent promoter (ctc) in vitro. RsbW efficiently blocked sigma B-dependent transcription but only if it was incubated with sigma B prior to the addition of the core enzyme.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.5M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Haldenwang WG, Lang N, Losick R. A sporulation-induced sigma-like regulatory protein from B. subtilis. Cell. 1981 Feb;23(2):615–624. [PubMed]
  • Haldenwang WG, Losick R. A modified RNA polymerase transcribes a cloned gene under sporulation control in Bacillus subtilis. Nature. 1979 Nov 15;282(5736):256–260. [PubMed]
  • Haldenwang WG, Losick R. Novel RNA polymerase sigma factor from Bacillus subtilis. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7000–7004. [PMC free article] [PubMed]
  • Binnie C, Lampe M, Losick R. Gene encoding the sigma 37 species of RNA polymerase sigma factor from Bacillus subtilis. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5943–5947. [PMC free article] [PubMed]
  • Duncan ML, Kalman SS, Thomas SM, Price CW. Gene encoding the 37,000-dalton minor sigma factor of Bacillus subtilis RNA polymerase: isolation, nucleotide sequence, chromosomal locus, and cryptic function. J Bacteriol. 1987 Feb;169(2):771–778. [PMC free article] [PubMed]
  • Benson AK, Haldenwang WG. Characterization of a regulatory network that controls sigma B expression in Bacillus subtilis. J Bacteriol. 1992 Feb;174(3):749–757. [PMC free article] [PubMed]
  • Boylan SA, Rutherford A, Thomas SM, Price CW. Activation of Bacillus subtilis transcription factor sigma B by a regulatory pathway responsive to stationary-phase signals. J Bacteriol. 1992 Jun;174(11):3695–3706. [PMC free article] [PubMed]
  • Boylan SA, Thomas MD, Price CW. Genetic method to identify regulons controlled by nonessential elements: isolation of a gene dependent on alternate transcription factor sigma B of Bacillus subtilis. J Bacteriol. 1991 Dec;173(24):7856–7866. [PMC free article] [PubMed]
  • Igo MM, Losick R. Regulation of a promoter that is utilized by minor forms of RNA polymerase holoenzyme in Bacillus subtilis. J Mol Biol. 1986 Oct 20;191(4):615–624. [PubMed]
  • Kalman S, Duncan ML, Thomas SM, Price CW. Similar organization of the sigB and spoIIA operons encoding alternate sigma factors of Bacillus subtilis RNA polymerase. J Bacteriol. 1990 Oct;172(10):5575–5585. [PMC free article] [PubMed]
  • Igo M, Lampe M, Ray C, Schafer W, Moran CP, Jr, Losick R. Genetic studies of a secondary RNA polymerase sigma factor in Bacillus subtilis. J Bacteriol. 1987 Aug;169(8):3464–3469. [PMC free article] [PubMed]
  • Margolis P, Driks A, Losick R. Establishment of cell type by compartmentalized activation of a transcription factor. Science. 1991 Oct 25;254(5031):562–565. [PubMed]
  • Schmidt R, Margolis P, Duncan L, Coppolecchia R, Moran CP, Jr, Losick R. Control of developmental transcription factor sigma F by sporulation regulatory proteins SpoIIAA and SpoIIAB in Bacillus subtilis. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9221–9225. [PMC free article] [PubMed]
  • Duncan L, Losick R. SpoIIAB is an anti-sigma factor that binds to and inhibits transcription by regulatory protein sigma F from Bacillus subtilis. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2325–2329. [PMC free article] [PubMed]
  • LaBell TL, Trempy JE, Haldenwang WG. Sporulation-specific sigma factor sigma 29 of Bacillus subtilis is synthesized from a precursor protein, P31. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1784–1788. [PMC free article] [PubMed]
  • Trempy JE, Morrison-Plummer J, Haldenwang WG. Synthesis of sigma 29, an RNA polymerase specificity determinant, is a developmentally regulated event in Bacillus subtilis. J Bacteriol. 1985 Jan;161(1):340–346. [PMC free article] [PubMed]
  • Truitt CL, Ray GL, Trempy JE, Da-Jian Z, Haldenwang WG. Isolation of Bacillus subtilis mutants altered in expression of a gene transcribed in vitro by a minor form of RNA polymerase (E-sigma 37). J Bacteriol. 1985 Feb;161(2):515–522. [PMC free article] [PubMed]
  • Truitt CL, Weaver EA, Haldenwang WG. Effects on growth and sporulation of inactivation of a Bacillus subtilis gene (ctc) transcribed in vitro by minor vegetative cell RNA polymerases (E-sigma 37, E-sigma 32). Mol Gen Genet. 1988 Apr;212(1):166–171. [PubMed]
  • Bhat PJ, Hopper JE. Overproduction of the GAL1 or GAL3 protein causes galactose-independent activation of the GAL4 protein: evidence for a new model of induction for the yeast GAL/MEL regulon. Mol Cell Biol. 1992 Jun;12(6):2701–2707. [PMC free article] [PubMed]
  • Chellappan S, Kraus VB, Kroger B, Munger K, Howley PM, Phelps WC, Nevins JR. Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4549–4553. [PMC free article] [PubMed]
  • Nevins JR. E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science. 1992 Oct 16;258(5081):424–429. [PubMed]
  • Ohnishi K, Kutsukake K, Suzuki H, Lino T. A novel transcriptional regulation mechanism in the flagellar regulon of Salmonella typhimurium: an antisigma factor inhibits the activity of the flagellum-specific sigma factor, sigma F. Mol Microbiol. 1992 Nov;6(21):3149–3157. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...