• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of embojLink to Publisher's site
EMBO J. Nov 1991; 10(11): 3467–3481.
PMCID: PMC453075

Associations between distinct pre-mRNA splicing components and the cell nucleus.


SC-35 is a non-snRNP spliceosome component that is specifically recognized by the anti-spliceosome monoclonal antibody alpha SC-35. In this paper we provide direct evidence that SC-35 is an essential splicing factor and we examine the immunolocalization of SC-35 by confocal laser scanning microscopy and by electron microscopy. We have found that the speckled staining pattern observed by fluorescence microscopy corresponds to structures previously designated as interchromatin granules and perichromatin fibrils. Although snRNP antigens are also concentrated in these nuclear regions, we show that the two types of spliceosome components are localized through different molecular interactions: The distribution of SC-35 was not affected by treatment with DNase I or RNase A, or when the cells were heat shocked. In contrast, snRNP antigens become diffusely distributed after RNase A digestion or heat shock. Examination of cells at different stages of mitosis revealed that the SC-35 speckled staining pattern is lost during prophase and speckles containing SC-35 begin to reform in the cytoplasm of anaphase cells. In contrast, snRNP antigens do not associate with speckled regions until late in telophase. These studies reveal a dynamic pattern of assembly and disassembly of the splicing factor SC-35 into discrete nuclear structures that colocalize with interchromatin granules and perichromatin fibrils. These subnuclear regions may therefore be nuclear organelles involved in the assembly of spliceosomes, or splicing itself.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (6.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Ast G, Goldblatt D, Offen D, Sperling J, Sperling R. A novel splicing factor is an integral component of 200S large nuclear ribonucleoprotein (InRNP) particles. EMBO J. 1991 Feb;10(2):425–432. [PMC free article] [PubMed]
  • Bachellerie JP, Puvion E, Zalta JP. Ultrastructural organization and biochemical characterization of chromatin - RNA - protein complexes isolated from mammalian cell nuclei. Eur J Biochem. 1975 Oct 15;58(2):327–337. [PubMed]
  • Baeuerle PA, Baltimore D. Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-kappa B transcription factor. Cell. 1988 Apr 22;53(2):211–217. [PubMed]
  • Bernhard W. A new staining procedure for electron microscopical cytology. J Ultrastruct Res. 1969 May;27(3):250–265. [PubMed]
  • Bindereif A, Green MR. Identification and functional analysis of mammalian splicing factors. Genet Eng (N Y) 1990;12:201–224. [PubMed]
  • Bond U. Heat shock but not other stress inducers leads to the disruption of a sub-set of snRNPs and inhibition of in vitro splicing in HeLa cells. EMBO J. 1988 Nov;7(11):3509–3518. [PMC free article] [PubMed]
  • Carmo-Fonseca M, Tollervey D, Pepperkok R, Barabino SM, Merdes A, Brunner C, Zamore PD, Green MR, Hurt E, Lamond AI. Mammalian nuclei contain foci which are highly enriched in components of the pre-mRNA splicing machinery. EMBO J. 1991 Jan;10(1):195–206. [PMC free article] [PubMed]
  • Carmo-Fonseca M, Pepperkok R, Sproat BS, Ansorge W, Swanson MS, Lamond AI. In vivo detection of snRNP-rich organelles in the nuclei of mammalian cells. EMBO J. 1991 Jul;10(7):1863–1873. [PMC free article] [PubMed]
  • Ciejek EM, Nordstrom JL, Tsai MJ, O'Malley BW. Ribonucleic acid precursors are associated with the chick oviduct nuclear matrix. Biochemistry. 1982 Sep 28;21(20):4945–4953. [PubMed]
  • Fakan S, Bernhard W. Localisation of rapidly and slowly labelled nuclear RNA as visualized by high resolution autoradiography. Exp Cell Res. 1971 Jul;67(1):129–141. [PubMed]
  • Fakan S, Nobis P. Ultrastructural localization of transcription sites and of RNA distribution during the cell cycle of synchronized CHO cells. Exp Cell Res. 1978 May;113(2):327–337. [PubMed]
  • Fakan S, Puvion E. The ultrastructural visualization of nucleolar and extranucleolar RNA synthesis and distribution. Int Rev Cytol. 1980;65:255–299. [PubMed]
  • Fakan S, Puvion E, Sphor G. Localization and characterization of newly synthesized nuclear RNA in isolate rat hepatocytes. Exp Cell Res. 1976 Apr;99(1):155–164. [PubMed]
  • Fakan S, Leser G, Martin TE. Ultrastructural distribution of nuclear ribonucleoproteins as visualized by immunocytochemistry on thin sections. J Cell Biol. 1984 Jan;98(1):358–363. [PMC free article] [PubMed]
  • Fu XD, Maniatis T. Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus. Nature. 1990 Feb 1;343(6257):437–441. [PubMed]
  • Gall JG, Callan HG. The sphere organelle contains small nuclear ribonucleoproteins. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6635–6639. [PMC free article] [PubMed]
  • Ge H, Manley JL. A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNA in vitro. Cell. 1990 Jul 13;62(1):25–34. [PubMed]
  • Krainer AR, Maniatis T. Multiple factors including the small nuclear ribonucleoproteins U1 and U2 are necessary for pre-mRNA splicing in vitro. Cell. 1985 Oct;42(3):725–736. [PubMed]
  • Krainer AR, Conway GC, Kozak D. Purification and characterization of pre-mRNA splicing factor SF2 from HeLa cells. Genes Dev. 1990 Jul;4(7):1158–1171. [PubMed]
  • Krainer AR, Conway GC, Kozak D. The essential pre-mRNA splicing factor SF2 influences 5' splice site selection by activating proximal sites. Cell. 1990 Jul 13;62(1):35–42. [PubMed]
  • Lerner EA, Lerner MR, Janeway CA, Jr, Steitz JA. Monoclonal antibodies to nucleic acid-containing cellular constituents: probes for molecular biology and autoimmune disease. Proc Natl Acad Sci U S A. 1981 May;78(5):2737–2741. [PMC free article] [PubMed]
  • Leser GP, Fakan S, Martin TE. Ultrastructural distribution of ribonucleoprotein complexes during mitosis. snRNP antigens are contained in mitotic granule clusters. Eur J Cell Biol. 1989 Dec;50(2):376–389. [PubMed]
  • Mariman EC, van Eekelen CA, Reinders RJ, Berns AJ, van Venrooij WJ. Adenoviral heterogeneous nuclear RNA is associated with the host nuclear matrix during splicing. J Mol Biol. 1982 Jan 5;154(1):103–119. [PubMed]
  • Monneron A, Bernhard W. Fine structural organization of the interphase nucleus in some mammalian cells. J Ultrastruct Res. 1969 May;27(3):266–288. [PubMed]
  • Nyman U, Hallman H, Hadlaczky G, Pettersson I, Sharp G, Ringertz NR. Intranuclear localization of snRNP antigens. J Cell Biol. 1986 Jan;102(1):137–144. [PMC free article] [PubMed]
  • Potashkin JA, Derby RJ, Spector DL. Differential distribution of factors involved in pre-mRNA processing in the yeast cell nucleus. Mol Cell Biol. 1990 Jul;10(7):3524–3534. [PMC free article] [PubMed]
  • Puvion E, Bernhard W. Ribonucleoprotein components in liver cell nuclei as visualized by cryoultramicrotomy. J Cell Biol. 1975 Oct;67(1):200–214. [PMC free article] [PubMed]
  • Puvion E, Viron A, Assens C, Leduc EH, Jeanteur P. Immunocytochemical identification of nuclear structures containing snRNPs in isolated rat liver cells. J Ultrastruct Res. 1984 May;87(2):180–189. [PubMed]
  • Raska I, Ochs RL, Salamin-Michel L. Immunocytochemistry of the cell nucleus. Electron Microsc Rev. 1990;3(2):301–353. [PubMed]
  • Reed R. Protein composition of mammalian spliceosomes assembled in vitro. Proc Natl Acad Sci U S A. 1990 Oct;87(20):8031–8035. [PMC free article] [PubMed]
  • Reuter R, Appel B, Bringmann P, Rinke J, Lührmann R. 5'-Terminal caps of snRNAs are reactive with antibodies specific for 2,2,7-trimethylguanosine in whole cells and nuclear matrices. Double-label immunofluorescent studies with anti-m3G antibodies and with anti-RNP and anti-Sm autoantibodies. Exp Cell Res. 1984 Oct;154(2):548–560. [PubMed]
  • Reuter R, Appel B, Rinke J, Lührmann R. Localization and structure of snRNPs during mitosis. Immunofluorescent and biochemical studies. Exp Cell Res. 1985 Jul;159(1):63–79. [PubMed]
  • Ruskin B, Zamore PD, Green MR. A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly. Cell. 1988 Jan 29;52(2):207–219. [PubMed]
  • Schrier WH, Reddy R, Busch H. Identification of an antigenic protein recognized by anti-Sm autoantibody. Cell Biol Int Rep. 1982 Oct;6(10):925–932. [PubMed]
  • Shukla RR, Dominski Z, Zwierzynski T, Kole R. Inactivation of splicing factors in HeLa cells subjected to heat shock. J Biol Chem. 1990 Nov 25;265(33):20377–20383. [PubMed]
  • Smith HC, Spector DL, Woodcock CL, Ochs RL, Bhorjee J. Alterations in chromatin conformation are accompanied by reorganization of nonchromatin domains that contain U-snRNP protein p28 and nuclear protein p107. J Cell Biol. 1985 Aug;101(2):560–567. [PMC free article] [PubMed]
  • Smith HC, Ochs RL, Fernandez EA, Spector DL. Macromolecular domains containing nuclear protein p107 and U-snRNP protein p28: further evidence for an in situ nuclear matrix. Mol Cell Biochem. 1986 May;70(2):151–168. [PubMed]
  • Smith HC, Harris SG, Zillmann M, Berget SM. Evidence that a nuclear matrix protein participates in premessenger RNA splicing. Exp Cell Res. 1989 Jun;182(2):521–533. [PubMed]
  • Spector DL. Colocalization of U1 and U2 small nuclear RNPs by immunocytochemistry. Biol Cell. 1984;51(1):109–112. [PubMed]
  • Spector DL. Higher order nuclear organization: three-dimensional distribution of small nuclear ribonucleoprotein particles. Proc Natl Acad Sci U S A. 1990 Jan;87(1):147–151. [PMC free article] [PubMed]
  • Spector DL, Schrier WH, Busch H. Immunoelectron microscopic localization of snRNPs. Biol Cell. 1983;49(1):1–10. [PubMed]
  • Spector DL, Smith HC. Redistribution of U-snRNPs during mitosis. Exp Cell Res. 1986 Mar;163(1):87–94. [PubMed]
  • Verheijen R, Kuijpers H, Vooijs P, Van Venrooij W, Ramaekers F. Distribution of the 70K U1 RNA-associated protein during interphase and mitosis. Correlation with other U RNP particles and proteins of the nuclear matrix. J Cell Sci. 1986 Dec;86:173–190. [PubMed]
  • Vogelstein B, Hunt BF. A subset of small nuclear ribonucleoprotein particle antigens is a component of the nuclear matrix. Biochem Biophys Res Commun. 1982 Apr 14;105(3):1224–1232. [PubMed]
  • Wright-Sandor LG, Reichlin M, Tobin SL. Alteration by heat shock and immunological characterization of Drosophila small nuclear ribonucleoproteins. J Cell Biol. 1989 Jun;108(6):2007–2016. [PMC free article] [PubMed]
  • Wu ZA, Murphy C, Callan HG, Gall JG. Small nuclear ribonucleoproteins and heterogeneous nuclear ribonucleoproteins in the amphibian germinal vesicle: loops, spheres, and snurposomes. J Cell Biol. 1991 May;113(3):465–483. [PMC free article] [PubMed]
  • Yost HJ, Lindquist S. RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell. 1986 Apr 25;45(2):185–193. [PubMed]
  • Zamore PD, Green MR. Identification, purification, and biochemical characterization of U2 small nuclear ribonucleoprotein auxiliary factor. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9243–9247. [PMC free article] [PubMed]
  • Zamore PD, Green MR. Biochemical characterization of U2 snRNP auxiliary factor: an essential pre-mRNA splicing factor with a novel intranuclear distribution. EMBO J. 1991 Jan;10(1):207–214. [PMC free article] [PubMed]
  • Zeitlin S, Parent A, Silverstein S, Efstratiadis A. Pre-mRNA splicing and the nuclear matrix. Mol Cell Biol. 1987 Jan;7(1):111–120. [PMC free article] [PubMed]
  • Zeitlin S, Wilson RC, Efstratiadis A. Autonomous splicing and complementation of in vivo-assembled spliceosomes. J Cell Biol. 1989 Mar;108(3):765–777. [PMC free article] [PubMed]
  • Zieve GW, Sauterer RA. Cell biology of the snRNP particles. Crit Rev Biochem Mol Biol. 1990;25(1):1–46. [PubMed]

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...