Logo of embojLink to Publisher's site
EMBO J. 1996 Sep 16; 15(18): 5060–5068.
PMCID: PMC452245

Transfer RNA structural change is a key element in the reassignment of the CUG codon in Candida albicans.


The human pathogenic yeast Candida albicans and a number of other Candida species translate the standard leucine CUG codon as serine. This is the latest addition to an increasing number of alterations to the standard genetic code which invalidate the theory that the code is frozen and universal. The unexpected finding that some organisms evolved alternative genetic codes raises two important questions: how have these alternative codes evolved and what evolutionary advantages could they create to allow for their selection? To address these questions in the context of serine CUG translation in C.albicans, we have searched for unique structural features in seryl-tRNA(CAG), which translates the leucine CUG codon as serine, and attempted to reconstruct the early stages of this genetic code switch in the closely related yeast species Saccharomyces cerevisiae. We show that a purine at position 33 (G33) in the C.albicans Ser-tRNA(CAG) anticodon loop, which replaces a conserved pyrimidine found in all other tRNAs, is a key structural element in the reassignment of the CUG codon from leucine to serine in that it decreases the decoding efficiency of the tRNA, thereby allowing cells to survive low level serine CUG translation. Expression of this tRNA in S.cerevisiae induces the stress response which allows cells to acquire thermotolerance. We argue that acquisition of thermotolerance may represent a positive selection for this genetic code change by allowing yeasts to adapt to sudden changes in environmental conditions and therefore colonize new ecological niches.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Branscomb EW, Galas DJ. Progressive decrease in protein synthesis accuracy induced by streptomycin in Escherichia coli. Nature. 1975 Mar 13;254(5496):161–163. [PubMed]
  • Bare L, Bruce AG, Gesteland R, Uhlenbeck OC. Uridine-33 in yeast tRNA not essential for amber suppression. Nature. 1983 Oct 6;305(5934):554–556. [PubMed]
  • Caruso M, Sacco M, Medoff G, Maresca B. Heat shock 70 gene is differentially expressed in Histoplasma capsulatum strains with different levels of thermotolerance and pathogenicity. Mol Microbiol. 1987 Sep;1(2):151–158. [PubMed]
  • Crick FH. The origin of the genetic code. J Mol Biol. 1968 Dec;38(3):367–379. [PubMed]
  • Curran JF, Yarus M. Base substitutions in the tRNA anticodon arm do not degrade the accuracy of reading frame maintenance. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6538–6542. [PMC free article] [PubMed]
  • Curran JF, Yarus M. Reading frame selection and transfer RNA anticodon loop stacking. Science. 1987 Dec 11;238(4833):1545–1550. [PubMed]
  • Cutler JE. Putative virulence factors of Candida albicans. Annu Rev Microbiol. 1991;45:187–218. [PubMed]
  • Dix DB, Wittenberg WL, Uhlenbeck OC, Thompson RC. Effect of replacing uridine 33 in yeast tRNAPhe on the reaction with ribosomes. J Biol Chem. 1986 Aug 5;261(22):10112–10118. [PubMed]
  • Weygand-Durasević I, Nalaskowska M, Söll D. Coexpression of eukaryotic tRNASer and yeast seryl-tRNA synthetase leads to functional amber suppression in Escherichia coli. J Bacteriol. 1994 Jan;176(1):232–239. [PMC free article] [PubMed]
  • Edelmann P, Gallant J. Mistranslation in E. coli. Cell. 1977 Jan;10(1):131–137. [PubMed]
  • Eggertsson G. Suppressors causing temperature sensitivity of growth in Escherichia coli. Genetics. 1968 Oct;60(2):269–280. [PMC free article] [PubMed]
  • Ellis N, Gallant J. An estimate of the global error frequency in translation. Mol Gen Genet. 1982;188(2):169–172. [PubMed]
  • Finkelstein DB, Strausberg S. Heat shock-regulated production of Escherichia coli beta-galactosidase in Saccharomyces cerevisiae. Mol Cell Biol. 1983 Sep;3(9):1625–1633. [PMC free article] [PubMed]
  • Geiduschek EP, Tocchini-Valentini GP. Transcription by RNA polymerase III. Annu Rev Biochem. 1988;57:873–914. [PubMed]
  • Grant CM, Firoozan M, Tuite MF. Mistranslation induces the heat-shock response in the yeast Saccharomyces cerevisiae. Mol Microbiol. 1989 Feb;3(2):215–220. [PubMed]
  • Heitzler J, Maréchal-Drouard L, Dirheimer G, Keith G. Use of a dot blot hybridization method for identification of pure tRNA species on different membranes. Biochim Biophys Acta. 1992 Feb 11;1129(3):273–277. [PubMed]
  • Ho YS, Kan YW. In vivo aminoacylation of human and Xenopus suppressor tRNAs constructed by site-specific mutagenesis. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2185–2188. [PMC free article] [PubMed]
  • Jucker FM, Pardi A. GNRA tetraloops make a U-turn. RNA. 1995 Apr;1(2):219–222. [PMC free article] [PubMed]
  • Jukes TH, Osawa S. Evolutionary changes in the genetic code. Comp Biochem Physiol B. 1993 Nov;106(3):489–494. [PubMed]
  • Kawaguchi Y, Honda H, Taniguchi-Morimura J, Iwasaki S. The codon CUG is read as serine in an asporogenic yeast Candida cylindracea. Nature. 1989 Sep 14;341(6238):164–166. [PubMed]
  • Ladner JE, Jack A, Robertus JD, Brown RS, Rhodes D, Clark BF, Klug A. Structure of yeast phenylalanine transfer RNA at 2.5 A resolution. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4414–4418. [PMC free article] [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Leuker CE, Ernst JF. Toxicity of a heterologous leucyl-tRNA (anticodon CAG) in the pathogen Candida albicans: in vivo evidence for non-standard decoding of CUG codons. Mol Gen Genet. 1994 Oct 28;245(2):212–217. [PubMed]
  • Li M, Tzagoloff A. Assembly of the mitochondrial membrane system: sequences of yeast mitochondrial valine and an unusual threonine tRNA gene. Cell. 1979 Sep;18(1):47–53. [PubMed]
  • Lloyd AT, Sharp PM. Evolution of codon usage patterns: the extent and nature of divergence between Candida albicans and Saccharomyces cerevisiae. Nucleic Acids Res. 1992 Oct 25;20(20):5289–5295. [PMC free article] [PubMed]
  • Maresca B, Carratù L. The biology of the heat shock response in parasites. Parasitol Today. 1992 Aug;8(8):260–266. [PubMed]
  • Murgola EJ. tRNA, suppression, and the code. Annu Rev Genet. 1985;19:57–80. [PubMed]
  • Ohama T, Suzuki T, Mori M, Osawa S, Ueda T, Watanabe K, Nakase T. Non-universal decoding of the leucine codon CUG in several Candida species. Nucleic Acids Res. 1993 Aug 25;21(17):4039–4045. [PMC free article] [PubMed]
  • Osawa S, Collins D, Ohama T, Jukes TH, Watanabe K. Evolution of the mitochondrial genetic code. III. Reassignment of CUN codons from leucine to threonine during evolution of yeast mitochondria. J Mol Evol. 1990 Apr;30(4):322–328. [PubMed]
  • Osawa S, Jukes TH, Watanabe K, Muto A. Recent evidence for evolution of the genetic code. Microbiol Rev. 1992 Mar;56(1):229–264. [PMC free article] [PubMed]
  • Pape LK, Koerner TJ, Tzagoloff A. Characterization of a yeast nuclear gene (MST1) coding for the mitochondrial threonyl-tRNA1 synthetase. J Biol Chem. 1985 Dec 5;260(28):15362–15370. [PubMed]
  • Pesole G, Lotti M, Alberghina L, Saccone C. Evolutionary origin of nonuniversal CUGSer codon in some Candida species as inferred from a molecular phylogeny. Genetics. 1995 Nov;141(3):903–907. [PMC free article] [PubMed]
  • Sanchez Y, Lindquist SL. HSP104 required for induced thermotolerance. Science. 1990 Jun 1;248(4959):1112–1115. [PubMed]
  • Santos MA, Tuite MF. The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic Acids Res. 1995 May 11;23(9):1481–1486. [PMC free article] [PubMed]
  • Santos M, Colthurst DR, Wills N, McLaughlin CS, Tuite MF. Efficient translation of the UAG termination codon in Candida species. Curr Genet. 1990 Jun;17(6):487–491. [PubMed]
  • Santos MA, Keith G, Tuite MF. Non-standard translational events in Candida albicans mediated by an unusual seryl-tRNA with a 5'-CAG-3' (leucine) anticodon. EMBO J. 1993 Feb;12(2):607–616. [PMC free article] [PubMed]
  • Schultz DW, Yarus M. Transfer RNA mutation and the malleability of the genetic code. J Mol Biol. 1994 Feb 4;235(5):1377–1380. [PubMed]
  • Schultz DW, Yarus M. On malleability in the genetic code. J Mol Evol. 1996 May;42(5):597–601. [PubMed]
  • Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. [PMC free article] [PubMed]
  • Steinberg S, Misch A, Sprinzl M. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1993 Jul 1;21(13):3011–3015. [PMC free article] [PubMed]
  • Sugiyama H, Ohkuma M, Masuda Y, Park SM, Ohta A, Takagi M. In vivo evidence for non-universal usage of the codon CUG in Candida maltosa. Yeast. 1995 Jan;11(1):43–52. [PubMed]
  • Thorbjarnardóttir S, Uemura H, Dingermann T, Rafnar T, Thorsteinsdóttir S, Söll D, Eggertsson G. Escherichia coli supH suppressor: temperature-sensitive missense suppression caused by an anticodon change in tRNASer2. J Bacteriol. 1985 Jan;161(1):207–211. [PMC free article] [PubMed]
  • Tourancheau AB, Tsao N, Klobutcher LA, Pearlman RE, Adoutte A. Genetic code deviations in the ciliates: evidence for multiple and independent events. EMBO J. 1995 Jul 3;14(13):3262–3267. [PMC free article] [PubMed]
  • Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. [PMC free article] [PubMed]
  • Tuohy TM, Thompson S, Gesteland RF, Atkins JF. Seven, eight and nine-membered anticodon loop mutants of tRNA(2Arg) which cause +1 frameshifting. Tolerance of DHU arm and other secondary mutations. J Mol Biol. 1992 Dec 20;228(4):1042–1054. [PubMed]
  • Ueda T, Suzuki T, Yokogawa T, Nishikawa K, Watanabe K. Unique structure of new serine tRNAs responsible for decoding leucine codon CUG in various Candida species and their putative ancestral tRNA genes. Biochimie. 1994;76(12):1217–1222. [PubMed]
  • Varshney U, Lee CP, RajBhandary UL. Direct analysis of aminoacylation levels of tRNAs in vivo. Application to studying recognition of Escherichia coli initiator tRNA mutants by glutaminyl-tRNA synthetase. J Biol Chem. 1991 Dec 25;266(36):24712–24718. [PubMed]
  • Woo NH, Roe BA, Rich A. Three-dimensional structure of Escherichia coli initiator tRNAfMet. Nature. 1980 Jul 24;286(5771):346–351. [PubMed]
  • Yost HJ, Lindquist S. Heat shock proteins affect RNA processing during the heat shock response of Saccharomyces cerevisiae. Mol Cell Biol. 1991 Feb;11(2):1062–1068. [PMC free article] [PubMed]

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...