• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of embojLink to Publisher's site
EMBO J. Sep 2, 1996; 15(17): 4734–4739.
PMCID: PMC452205

Ribosome-initiator tRNA complex as an intermediate in translation initiation in Escherichia coli revealed by use of mutant initiator tRNAs and specialized ribosomes.

Abstract

For functional studies of mutant Escherichia coli initiator tRNAs in vivo, we previously described a strategy based on the use of tRNA genes carrying an anticodon sequence change from CAU to CUA along with a mutant chloramphenicol acetyltransferase (CAT) gene carrying an initiation codon change from AUG to UAG. Surprisingly, under conditions where the mutant initiator tRNA is optimally active, the CAT gene with the UAG initiation codon produced more CAT protein (3- to 9-fold more depending on the conditions) than the wild-type CAT gene. Here we show that two new mutant CAT genes having GUC and AUC initiation codons also produce more of the CAT protein in the presence of the corresponding mutant initiator tRNAs. These results are most easily understood if assembly of the 30S ribosome-initiator tRNA-mRNA initiation complex in vivo proceeds with the 30S ribosome binding first to the initiator tRNA and then to the mRNA. In cells overproducing the mutant initiator tRNAs, most ribosomes would carry the mutant initiator tRNA and these ribosomes would select the mutant CAT mRNA over the other mRNAs.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Calogero RA, Pon CL, Canonaco MA, Gualerzi CO. Selection of the mRNA translation initiation region by Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6427–6431. [PMC free article] [PubMed]
  • Giegé R, Ebel JP, Clark BF. Formylation of mischarged E. coli tRNA Met f . FEBS Lett. 1973 Mar 15;30(3):291–295. [PubMed]
  • Gold L. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem. 1988;57:199–233. [PubMed]
  • Gualerzi CO, Pon CL. Initiation of mRNA translation in prokaryotes. Biochemistry. 1990 Jun 26;29(25):5881–5889. [PubMed]
  • Guillon JM, Mechulam Y, Schmitter JM, Blanquet S, Fayat G. Disruption of the gene for Met-tRNA(fMet) formyltransferase severely impairs growth of Escherichia coli. J Bacteriol. 1992 Jul;174(13):4294–4301. [PMC free article] [PubMed]
  • Härtlein M, Frank R, Madern D. Nucleotide sequence of Escherichia coli valyl-tRNA synthetase gene valS. Nucleic Acids Res. 1987 Nov 11;15(21):9081–9082. [PMC free article] [PubMed]
  • Hartz D, McPheeters DS, Green L, Gold L. Detection of Escherichia coli ribosome binding at translation initiation sites in the absence of tRNA. J Mol Biol. 1991 Mar 5;218(1):99–105. [PubMed]
  • Hinnebusch AG. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev. 1988 Jun;52(2):248–273. [PMC free article] [PubMed]
  • Hui A, de Boer HA. Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4762–4766. [PMC free article] [PubMed]
  • Jacob WF, Santer M, Dahlberg AE. A single base change in the Shine-Dalgarno region of 16S rRNA of Escherichia coli affects translation of many proteins. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4757–4761. [PMC free article] [PubMed]
  • Jay G, Kaempfer R. Sequence of events in initiation of translation: a role for initiator transfer RNA in the recognition of messenger RNA. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3199–3203. [PMC free article] [PubMed]
  • Kozak M. Regulation of translation in eukaryotic systems. Annu Rev Cell Biol. 1992;8:197–225. [PubMed]
  • Li S, Kumar NV, Varshney U, RajBhandary UL. Important role of the amino acid attached to tRNA in formylation and in initiation of protein synthesis in Escherichia coli. J Biol Chem. 1996 Jan 12;271(2):1022–1028. [PubMed]
  • Mangroo D, RajBhandary UL. Mutants of Escherichia coli initiator tRNA defective in initiation. Effects of overproduction of methionyl-tRNA transformylase and the initiation factors IF2 and IF3. J Biol Chem. 1995 May 19;270(20):12203–12209. [PubMed]
  • Pallanck L, Schulman LH. Anticodon-dependent aminoacylation of a noncognate tRNA with isoleucine, valine, and phenylalanine in vivo. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3872–3876. [PMC free article] [PubMed]
  • RajBhandary UL. Initiator transfer RNAs. J Bacteriol. 1994 Feb;176(3):547–552. [PMC free article] [PubMed]
  • Schulman LH, Pelka H. In vitro conversion of a methionine to a glutamine-acceptor tRNA. Biochemistry. 1985 Dec 3;24(25):7309–7314. [PubMed]
  • Seong BL, RajBhandary UL. Escherichia coli formylmethionine tRNA: mutations in GGGCCC sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation of anticodon loop. Proc Natl Acad Sci U S A. 1987 Jan;84(2):334–338. [PMC free article] [PubMed]
  • Smith JD, Celis JE. Mutant tyrosine transfer RNA that can be charged with glutamine. Nat New Biol. 1973 May 16;243(124):66–71. [PubMed]
  • Van Duin J, Overbeek GP, Backendorf C. Functional recognition of phage RNA by 30-S ribosomal subunits in the absence of initiator tRNA. Eur J Biochem. 1980 Sep;110(2):593–597. [PubMed]
  • Varshney U, RajBhandary UL. Initiation of protein synthesis from a termination codon. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1586–1590. [PMC free article] [PubMed]
  • Varshney U, RajBhandary UL. Role of methionine and formylation of initiator tRNA in initiation of protein synthesis in Escherichia coli. J Bacteriol. 1992 Dec;174(23):7819–7826. [PMC free article] [PubMed]
  • Varshney U, Lee CP, RajBhandary UL. Direct analysis of aminoacylation levels of tRNAs in vivo. Application to studying recognition of Escherichia coli initiator tRNA mutants by glutaminyl-tRNA synthetase. J Biol Chem. 1991 Dec 25;266(36):24712–24718. [PubMed]
  • Varshney U, Lee CP, Seong BL, RajBhandary UL. Mutants of initiator tRNA that function both as initiators and elongators. J Biol Chem. 1991 Sep 25;266(27):18018–18024. [PubMed]
  • Yamao F, Inokuchi H, Cheung A, Ozeki H, Söll D. Escherichia coli glutaminyl-tRNA synthetase. I. Isolation and DNA sequence of the glnS gene. J Biol Chem. 1982 Oct 10;257(19):11639–11643. [PubMed]

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...