• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of embojLink to Publisher's site
EMBO J. Jul 15, 1996; 15(14): 3611–3620.
PMCID: PMC451974

The Saccharomyces cerevisiae kinetochore contains a cyclin-CDK complexing homologue, as identified by in vitro reconstitution.

Abstract

We have developed methods to reconstitute the centromere DNA (CEN)-bound Saccharomyces cerevisiae kinetochore complex, CBF3, from isolated CBF3 components in vitro. This revealed that cooperation of at least three CBF3 components is imperatively required to form an activity that specifically binds to the centromere DNA in vitro. Two of the CBF3 proteins, Cbf3a and Cbf3b, that were used in the reconstitution were obtained from heterologous systems. In contrast, Cbf3c, the third CBF3 component known, had to be purified from S. cerevisiae to obtain a Cbf3c preparation that was competent to reconstitute the CBF3-CEN complex in combination with Cbf3a and Cbf3b. This led to the identification of a 29 kDa protein that co-purified with Cbf3c. The 29 kDa protein was shown to be a fourth component of CBF3 and therefore was named Cbf3d. Analysing the Cbf3d gene revealed that Cbf3d exhibits strong homology to p19SKP1, a human protein that is part of active cyclin A-CDK2 complexes. Therefore, Cbf3d is the only CBF3 protein that has a known homologue in higher eukaryotes and may provide the anchor that directs cell cycle-regulated proteins to the kinetochore.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.4M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bell SP, Stillman B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature. 1992 May 14;357(6374):128–134. [PubMed]
  • Bloom K. The centromere frontier: kinetochore components, microtubule-based motility, and the CEN-value paradox. Cell. 1993 May 21;73(4):621–624. [PubMed]
  • Brinkley BR. Centromeres and kinetochores: integrated domains on eukaryotic chromosomes. Curr Opin Cell Biol. 1990 Jun;2(3):446–452. [PubMed]
  • Doheny KF, Sorger PK, Hyman AA, Tugendreich S, Spencer F, Hieter P. Identification of essential components of the S. cerevisiae kinetochore. Cell. 1993 May 21;73(4):761–774. [PubMed]
  • Girard F, Strausfeld U, Fernandez A, Lamb NJ. Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell. 1991 Dec 20;67(6):1169–1179. [PubMed]
  • Goh PY, Kilmartin JV. NDC10: a gene involved in chromosome segregation in Saccharomyces cerevisiae. J Cell Biol. 1993 May;121(3):503–512. [PMC free article] [PubMed]
  • Goodrich JA, Tjian R. TBP-TAF complexes: selectivity factors for eukaryotic transcription. Curr Opin Cell Biol. 1994 Jun;6(3):403–409. [PubMed]
  • Gorbsky GJ. Kinetochores, microtubules and the metaphase checkpoint. Trends Cell Biol. 1995 Apr;5(4):143–148. [PubMed]
  • Hegemann JH, Fleig UN. The centromere of budding yeast. Bioessays. 1993 Jul;15(7):451–460. [PubMed]
  • Hyman AA. Microtubule dynamics. Kinetochores get a grip. Curr Biol. 1995 May 1;5(5):483–484. [PubMed]
  • Hyman AA, Middleton K, Centola M, Mitchison TJ, Carbon J. Microtubule-motor activity of a yeast centromere-binding protein complex. Nature. 1992 Oct 8;359(6395):533–536. [PubMed]
  • Irniger S, Piatti S, Michaelis C, Nasmyth K. Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell. 1995 Apr 21;81(2):269–278. [PubMed]
  • Jiang W, Carbon J. Molecular analysis of the budding yeast centromere/kinetochore. Cold Spring Harb Symp Quant Biol. 1993;58:669–676. [PubMed]
  • Jiang W, Lechner J, Carbon J. Isolation and characterization of a gene (CBF2) specifying a protein component of the budding yeast kinetochore. J Cell Biol. 1993 May;121(3):513–519. [PMC free article] [PubMed]
  • Jiang W, Lim MY, Yoon HJ, Thorner J, Martin GS, Carbon J. Overexpression of the yeast MCK1 protein kinase suppresses conditional mutations in centromere-binding protein genes CBF2 and CBF5. Mol Gen Genet. 1995 Feb 6;246(3):360–366. [PubMed]
  • Koshland D. Mitosis: back to the basics. Cell. 1994 Jul 1;77(7):951–954. [PubMed]
  • Lechner J. A zinc finger protein, essential for chromosome segregation, constitutes a putative DNA binding subunit of the Saccharomyces cerevisiae kinetochore complex, Cbf3. EMBO J. 1994 Nov 1;13(21):5203–5211. [PMC free article] [PubMed]
  • Lechner J, Carbon J. A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell. 1991 Feb 22;64(4):717–725. [PubMed]
  • Marmorstein R, Carey M, Ptashne M, Harrison SC. DNA recognition by GAL4: structure of a protein-DNA complex. Nature. 1992 Apr 2;356(6368):408–414. [PubMed]
  • Meluh PB, Koshland D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol Biol Cell. 1995 Jul;6(7):793–807. [PMC free article] [PubMed]
  • Middleton K, Carbon J. KAR3-encoded kinesin is a minus-end-directed motor that functions with centromere binding proteins (CBF3) on an in vitro yeast kinetochore. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7212–7216. [PMC free article] [PubMed]
  • Nasmyth K. Control of the yeast cell cycle by the Cdc28 protein kinase. Curr Opin Cell Biol. 1993 Apr;5(2):166–179. [PubMed]
  • Pluta AF, Mackay AM, Ainsztein AM, Goldberg IG, Earnshaw WC. The centromere: hub of chromosomal activities. Science. 1995 Dec 8;270(5242):1591–1594. [PubMed]
  • Sauer N, Stolz J. SUC1 and SUC2: two sucrose transporters from Arabidopsis thaliana; expression and characterization in baker's yeast and identification of the histidine-tagged protein. Plant J. 1994 Jul;6(1):67–77. [PubMed]
  • Shero JH, Hieter P. A suppressor of a centromere DNA mutation encodes a putative protein kinase (MCK1). Genes Dev. 1991 Apr;5(4):549–560. [PubMed]
  • Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. [PMC free article] [PubMed]
  • Sorger PK, Severin FF, Hyman AA. Factors required for the binding of reassembled yeast kinetochores to microtubules in vitro. J Cell Biol. 1994 Nov;127(4):995–1008. [PMC free article] [PubMed]
  • Stoler S, Keith KC, Curnick KE, Fitzgerald-Hayes M. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev. 1995 Mar 1;9(5):573–586. [PubMed]
  • Strunnikov AV, Kingsbury J, Koshland D. CEP3 encodes a centromere protein of Saccharomyces cerevisiae. J Cell Biol. 1995 Mar;128(5):749–760. [PMC free article] [PubMed]
  • Kozarov E, van der Wel H, Field M, Gritzali M, Brown RD, Jr, West CM. Characterization of FP21, a cytosolic glycoprotein from Dictyostelium. J Biol Chem. 1995 Feb 17;270(7):3022–3030. [PubMed]
  • Wu H, Yang WP, Barbas CF., 3rd Building zinc fingers by selection: toward a therapeutic application. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):344–348. [PMC free article] [PubMed]
  • Xiao Z, McGrew JT, Schroeder AJ, Fitzgerald-Hayes M. CSE1 and CSE2, two new genes required for accurate mitotic chromosome segregation in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Aug;13(8):4691–4702. [PMC free article] [PubMed]
  • Yoon HJ, Carbon J. Genetic and biochemical interactions between an essential kinetochore protein, Cbf2p/Ndc10p, and the CDC34 ubiquitin-conjugating enzyme. Mol Cell Biol. 1995 Sep;15(9):4835–4842. [PMC free article] [PubMed]
  • Zhang H, Kobayashi R, Galaktionov K, Beach D. p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell. 1995 Sep 22;82(6):915–925. [PubMed]

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...