• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Oct 11, 1994; 91(21): 10124–10128.
PMCID: PMC44970

Colocalization of vertebrate lamin B and lamin B receptor (LBR) in nuclear envelopes and in LBR-induced membrane stacks of the yeast Saccharomyces cerevisiae.

Abstract

We have expressed human lamin B and the chicken lamin B receptor (LBR), either separately or together, in yeast and have monitored the subcellular location of the expressed proteins by immunofluorescence microscopy, immunoelectron microscopy, and cell fractionation. At the light microscopic level, the heterologous lamin B localized to the yeast nuclear rim and at electron microscopic resolution was found subjacent to the yeast inner nuclear membrane. These data indicate that vertebrate lamin B was correctly targeted in yeast. Expression of the heterologous LBR, either alone or together with the heterologous lamin B, resulted in the formation of membrane stacks primarily adjacent to the nuclear envelope, but also projecting from the nuclear envelope into the cytoplasm or under the plasma membrane. Double immunoelectron microscopy showed colocalization of the heterologous lamin B and LBR in the yeast nuclear envelope and in the LBR-induced membrane stacks. Cell fractionation showed the presence of the heterologous lamin B and LBR in a subnuclear fraction enriched in nuclear envelopes. The heterologous lamin B was extracted at 8 M urea, but not at 4 M urea, thus behaving as a peripheral membrane protein and indistinguishable from assembled lamins. The heterologous LBR was not extracted by 8 M urea, indicating that it was integrated into the membrane. The observed colocalization and cofractionation are consistent with previously reported in vitro binding data and suggest that heterologous lamin B and LBR interact with each other when coexpressed in yeast.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.9M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Gerace L, Blum A, Blobel G. Immunocytochemical localization of the major polypeptides of the nuclear pore complex-lamina fraction. Interphase and mitotic distribution. J Cell Biol. 1978 Nov;79(2 Pt 1):546–566. [PMC free article] [PubMed]
  • Gerace L, Blobel G. The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell. 1980 Jan;19(1):277–287. [PubMed]
  • Höger TH, Krohne G, Franke WW. Amino acid sequence and molecular characterization of murine lamin B as deduced from cDNA clones. Eur J Cell Biol. 1988 Dec;47(2):283–290. [PubMed]
  • Fisher DZ, Chaudhary N, Blobel G. cDNA sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6450–6454. [PMC free article] [PubMed]
  • McKeon FD, Kirschner MW, Caput D. Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature. 1986 Feb 6;319(6053):463–468. [PubMed]
  • Lutz RJ, Trujillo MA, Denham KS, Wenger L, Sinensky M. Nucleoplasmic localization of prelamin A: implications for prenylation-dependent lamin A assembly into the nuclear lamina. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3000–3004. [PMC free article] [PubMed]
  • Farnsworth CC, Wolda SL, Gelb MH, Glomset JA. Human lamin B contains a farnesylated cysteine residue. J Biol Chem. 1989 Dec 5;264(34):20422–20429. [PMC free article] [PubMed]
  • Beck LA, Hosick TJ, Sinensky M. Isoprenylation is required for the processing of the lamin A precursor. J Cell Biol. 1990 May;110(5):1489–1499. [PMC free article] [PubMed]
  • Worman HJ, Yuan J, Blobel G, Georgatos SD. A lamin B receptor in the nuclear envelope. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8531–8534. [PMC free article] [PubMed]
  • Worman HJ, Evans CD, Blobel G. The lamin B receptor of the nuclear envelope inner membrane: a polytopic protein with eight potential transmembrane domains. J Cell Biol. 1990 Oct;111(4):1535–1542. [PMC free article] [PubMed]
  • Bailer SM, Eppenberger HM, Griffiths G, Nigg EA. Characterization of A 54-kD protein of the inner nuclear membrane: evidence for cell cycle-dependent interaction with the nuclear lamina. J Cell Biol. 1991 Aug;114(3):389–400. [PMC free article] [PubMed]
  • Courvalin JC, Lassoued K, Worman HJ, Blobel G. Identification and characterization of autoantibodies against the nuclear envelope lamin B receptor from patients with primary biliary cirrhosis. J Exp Med. 1990 Sep 1;172(3):961–967. [PMC free article] [PubMed]
  • Foisner R, Gerace L. Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell. 1993 Jul 2;73(7):1267–1279. [PubMed]
  • Chen WN, Capieaux E, Balzi E, Goffeau A. The YGL022 gene encodes a putative transport protein. Yeast. 1991 Apr;7(3):305–308. [PubMed]
  • Lai MH, Bard M, Pierson CA, Alexander JF, Goebl M, Carter GT, Kirsch DR. The identification of a gene family in the Saccharomyces cerevisiae ergosterol biosynthesis pathway. Gene. 1994 Mar 11;140(1):41–49. [PubMed]
  • Shimanuki M, Goebl M, Yanagida M, Toda T. Fission yeast sts1+ gene encodes a protein similar to the chicken lamin B receptor and is implicated in pleiotropic drug-sensitivity, divalent cation-sensitivity, and osmoregulation. Mol Biol Cell. 1992 Mar;3(3):263–273. [PMC free article] [PubMed]
  • Lorenz RT, Parks LW. Cloning, sequencing, and disruption of the gene encoding sterol C-14 reductase in Saccharomyces cerevisiae. DNA Cell Biol. 1992 Nov;11(9):685–692. [PubMed]
  • Georgatos SD, Maroulakou I, Blobel G. Lamin A, lamin B, and lamin B receptor analogues in yeast. J Cell Biol. 1989 Jun;108(6):2069–2082. [PMC free article] [PubMed]
  • Enoch T, Peter M, Nurse P, Nigg EA. p34cdc2 acts as a lamin kinase in fission yeast. J Cell Biol. 1991 Mar;112(5):797–807. [PMC free article] [PubMed]
  • Smith S, Blobel G. The first membrane spanning region of the lamin B receptor is sufficient for sorting to the inner nuclear membrane. J Cell Biol. 1993 Feb;120(3):631–637. [PMC free article] [PubMed]
  • Guarente L, Yocum RR, Gifford P. A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7410–7414. [PMC free article] [PubMed]
  • Wilson IA, Niman HL, Houghten RA, Cherenson AR, Connolly ML, Lerner RA. The structure of an antigenic determinant in a protein. Cell. 1984 Jul;37(3):767–778. [PubMed]
  • Pollard KM, Chan EK, Grant BJ, Sullivan KF, Tan EM, Glass CA. In vitro posttranslational modification of lamin B cloned from a human T-cell line. Mol Cell Biol. 1990 May;10(5):2164–2175. [PMC free article] [PubMed]
  • Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. [PMC free article] [PubMed]
  • Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. [PMC free article] [PubMed]
  • Pringle JR, Adams AE, Drubin DG, Haarer BK. Immunofluorescence methods for yeast. Methods Enzymol. 1991;194:565–602. [PubMed]
  • Chaudhary N, Courvalin JC. Stepwise reassembly of the nuclear envelope at the end of mitosis. J Cell Biol. 1993 Jul;122(2):295–306. [PMC free article] [PubMed]
  • Roberts CJ, Raymond CK, Yamashiro CT, Stevens TH. Methods for studying the yeast vacuole. Methods Enzymol. 1991;194:644–661. [PubMed]
  • Small GM, Imanaka T, Shio H, Lazarow PB. Efficient association of in vitro translation products with purified stable Candida tropicalis peroxisomes. Mol Cell Biol. 1987 May;7(5):1848–1855. [PMC free article] [PubMed]
  • Tokuyasu KT. A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol. 1973 May;57(2):551–565. [PMC free article] [PubMed]
  • Griffiths G, Simons K, Warren G, Tokuyasu KT. Immunoelectron microscopy using thin, frozen sections: application to studies of the intracellular transport of Semliki Forest virus spike glycoproteins. Methods Enzymol. 1983;96:466–485. [PubMed]
  • Rout MP, Kilmartin JV. Components of the yeast spindle and spindle pole body. J Cell Biol. 1990 Nov;111(5 Pt 1):1913–1927. [PMC free article] [PubMed]
  • Radu A, Blobel G, Wozniak RW. Nup155 is a novel nuclear pore complex protein that contains neither repetitive sequence motifs nor reacts with WGA. J Cell Biol. 1993 Apr;121(1):1–9. [PMC free article] [PubMed]
  • Severs NJ, Jordan EG, Williamson DH. Nuclear pore absence from areas of close association between nucleus and vacuole in synchronous yeast cultures. J Ultrastruct Res. 1976 Mar;54(3):374–387. [PubMed]
  • Wright R. Insights from inducible membranes. Curr Biol. 1993 Dec 1;3(12):870–873. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...