• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jcinvestThe Journal of Clinical InvestigationCurrent IssueArchiveSubscriptionAbout the Journal
J Clin Invest. Jun 1993; 91(6): 2866–2872.
PMCID: PMC443356

Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins.

Abstract

Phagocytes generate H2O2 for use by a secreted heme enzyme, myeloperoxidase, to kill invading bacteria, viruses, and fungi. We have explored the possibility that myeloperoxidase might also convert L-tyrosine to a radical catalyst that cross-links proteins. Protein-bound tyrosyl residues exposed to myeloperoxidase, H2O2, and L-tyrosine were oxidized to o,o'-dityrosine, a stable product of the tyrosyl radical. The cross-linking reaction required L-tyrosine but was independent of halide and free transition metal ions; the heme poisons azide and aminotriazole were inhibitory. Activated neutrophils likewise converted polypeptide tyrosines to dityrosine. The pathway for oxidation of peptide tyrosyl residues was dependent upon L-tyrosine and was inhibited by heme poisons and catalase. Dityrosine synthesis was little affected by plasma concentrations of Cl- and amino acids, suggesting that the reaction pathway might be physiologically relevant. The requirement for free L-tyrosine and H2O2 for dityrosine formation and the inhibition by heme poisons support the hypothesis that myeloperoxidase catalyzes the cross-linking of proteins by a peroxidative mechanism involving tyrosyl radical. In striking contrast to the pathways generally used to study protein oxidation in vitro, the reaction does not require free metal ions. We speculate that protein dityrosine cross-linking by myeloperoxidase may play a role in bacterial killing or injuring normal tissue. The intense fluorescence and stability of biphenolic compounds may allow dityrosine to act as a marker for proteins oxidatively damaged by myeloperoxidase in phagocyte-rich inflammatory lesions.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Stadtman ER. Protein oxidation and aging. Science. 1992 Aug 28;257(5074):1220–1224. [PubMed]
  • Segal AW. The electron transport chain of the microbicidal oxidase of phagocytic cells and its involvement in the molecular pathology of chronic granulomatous disease. J Clin Invest. 1989 Jun;83(6):1785–1793. [PMC free article] [PubMed]
  • Babior BM, Kipnes RS, Curnutte JT. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest. 1973 Mar;52(3):741–744. [PMC free article] [PubMed]
  • Heinecke JW, Li W, Daehnke HL, 3rd, Goldstein JA. Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages. J Biol Chem. 1993 Feb 25;268(6):4069–4077. [PubMed]
  • Anderson SO. Covalent cross-links in a structural protein, resilin. Acta Physiol Scand Suppl. 1966;263:1–81. [PubMed]
  • Lehrer SS, Fasman GD. Ultraviolet irradiation effects in poly-L-tyrosine and model compounds. Identification of bityrosine as a photoproduct. Biochemistry. 1967 Mar;6(3):757–767. [PubMed]
  • GROSS AJ, SIZER IW. The oxidation of tyramine, tyrosine, and related compounds by peroxidase. J Biol Chem. 1959 Jun;234(6):1611–1614. [PubMed]
  • Hickstein DD, Ozols J, Williams SA, Baenziger JU, Locksley RM, Roth GJ. Isolation and characterization of the receptor on human neutrophils that mediates cellular adherence. J Biol Chem. 1987 Apr 25;262(12):5576–5580. [PubMed]
  • Rakita RM, Michel BR, Rosen H. Differential inactivation of Escherichia coli membrane dehydrogenases by a myeloperoxidase-mediated antimicrobial system. Biochemistry. 1990 Jan 30;29(4):1075–1080. [PubMed]
  • Klebanoff SJ, Waltersdorph AM, Rosen H. Antimicrobial activity of myeloperoxidase. Methods Enzymol. 1984;105:399–403. [PubMed]
  • Morita Y, Iwamoto H, Aibara S, Kobayashi T, Hasegawa E. Crystallization and properties of myeloperoxidase from normal human leukocytes. J Biochem. 1986 Mar;99(3):761–770. [PubMed]
  • Amadò R, Aeschbach R, Neukom H. Dityrosine: in vitro production and characterization. Methods Enzymol. 1984;107:377–388. [PubMed]
  • LOWRY OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed]
  • Davies KJ. Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem. 1987 Jul 15;262(20):9895–9901. [PubMed]
  • Meucci E, Mordente A, Martorana GE. Metal-catalyzed oxidation of human serum albumin: conformational and functional changes. Implications in protein aging. J Biol Chem. 1991 Mar 15;266(8):4692–4699. [PubMed]
  • Aeschbach R, Amadò R, Neukom H. Formation of dityrosine cross-links in proteins by oxidation of tyrosine residues. Biochim Biophys Acta. 1976 Aug 9;439(2):292–301. [PubMed]
  • Ator MA, David SK, Ortiz de Montellano PR. Structure and catalytic mechanism of horseradish peroxidase. Regiospecific meso alkylation of the prosthetic heme group by alkylhydrazines. J Biol Chem. 1987 Nov 5;262(31):14954–14960. [PubMed]
  • Hunter EP, Desrosiers MF, Simic MG. The effect of oxygen, antioxidants, and superoxide radical on tyrosine phenoxyl radical dimerization. Free Radic Biol Med. 1989;6(6):581–585. [PubMed]
  • Hurst JK, Barrette WC., Jr Leukocytic oxygen activation and microbicidal oxidative toxins. Crit Rev Biochem Mol Biol. 1989;24(4):271–328. [PubMed]
  • DeFelippis MR, Murthy CP, Faraggi M, Klapper MH. Pulse radiolytic measurement of redox potentials: the tyrosine and tryptophan radicals. Biochemistry. 1989 May 30;28(11):4847–4853. [PubMed]
  • Prince RC. Tyrosine radicals. Trends Biochem Sci. 1988 Aug;13(8):286–288. [PubMed]
  • Malencik DA, Anderson SR. Dityrosine formation in calmodulin. Biochemistry. 1987 Feb 10;26(3):695–704. [PubMed]
  • Bayse GS, Michaels AW, Morrison M. The peroxidase-catalyzed oxidation of tyrosine. Biochim Biophys Acta. 1972 Sep 19;284(1):34–42. [PubMed]
  • Garcia-Castineiras S, Dillon J, Spector A. Detection of bityrosine in cataractous human lens protein. Science. 1978 Feb 24;199(4331):897–899. [PubMed]
  • Foerder CA, Shapiro BM. Release of ovoperoxidase from sea urchin eggs hardens the fertilization membrane with tyrosine crosslinks. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4214–4218. [PMC free article] [PubMed]
  • Briza P, Winkler G, Kalchhauser H, Breitenbach M. Dityrosine is a prominent component of the yeast ascospore wall. A proof of its structure. J Biol Chem. 1986 Mar 25;261(9):4288–4294. [PubMed]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

Formats:

Related citations in PubMed

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...