• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jcinvestThe Journal of Clinical InvestigationCurrent IssueArchiveSubscriptionAbout the Journal
J Clin Invest. Dec 1987; 80(6): 1550–1560.
PMCID: PMC442423

Neutrophil activation on biological surfaces. Massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes.


Recombinant tumor necrosis factor alpha (rTNF alpha) and beta (rTNF beta) did not trigger H2O2 release from PMN in suspension. However, when PMN were plated on polystyrene surfaces coated with serum, fibronectin, vitronectin, laminin, or human umbilical vein endothelial cells (HUVEC), rTNFs induced a massive, prolonged secretory response, similar to that elicited by phorbol myristate acetate (PMA) or bacteria. On serum-coated plates, the maximum sustained rate of H2O2 release in response to rTNF alpha was 2.6 +/- 0.2 nmol/min per 10(6) PMN, the same as that with PMA; release continued for 73 +/- 4 min. On laminin-coated surfaces or HUVEC, release of H2O2 in response to rTNFs was slower, but lasted approximately 3.5 h, reaching the same total (greater than 100 nmol/10(6) PMN). Not only was this response far longer and larger than for other soluble stimuli of the respiratory burst studied with PMN in suspension, but the concentration necessary to elicit a half-maximal response (EC50) for rTNF alpha was orders of magnitude lower (55 pM). Responses were similar with FMLP, but ranged from zero to small with recombinant IFN alpha, recombinant IFN beta, recombinant IFN gamma, platelet-derived growth factor, recombinant IL-1 beta, or bacterial lipopolysaccharide. Adherent monocytes did not secrete H2O2 in response to rTNFs. H2O2 secretion by adherent PMN was first detectable 15-90 min after addition of rTNFs or FMLP. This lag period was unaffected by prior exposure of PMN to rTNF alpha in suspension, by allowing PMN to adhere before adding rTNF alpha, or by incubating adherent PMN in medium conditioned by rTNF alpha-treated PMN. Cytochalasins abolished H2O2 secretion in response to rTNFs, but not FMLP, if added during, but not after, the lag period. Thus, H2O2 secretion from rTNF alpha-treated PMN appears to be a direct but delayed response that requires assembly of microfilaments during exposure to the cytokine. These results suggest that PMN adherent to intra- or extravascular surfaces may undergo a massive, prolonged respiratory burst at the command of macrophages and lymphocytes reacting to microbial products and antigens.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Cochrane CG, Spragg R, Revak SD. Pathogenesis of the adult respiratory distress syndrome. Evidence of oxidant activity in bronchoalveolar lavage fluid. J Clin Invest. 1983 Mar;71(3):754–761. [PMC free article] [PubMed]
  • Tvedten HW, Till GO, Ward PA. Mediators of lung injury in mice following systemic activation of complement. Am J Pathol. 1985 Apr;119(1):92–100. [PMC free article] [PubMed]
  • Revak SD, Rice CL, Schraufstätter IU, Halsey WA, Jr, Bohl BP, Clancy RM, Cochrane CG. Experimental pulmonary inflammatory injury in the monkey. J Clin Invest. 1985 Sep;76(3):1182–1192. [PMC free article] [PubMed]
  • Henson PM, Johnston RB., Jr Tissue injury in inflammation. Oxidants, proteinases, and cationic proteins. J Clin Invest. 1987 Mar;79(3):669–674. [PMC free article] [PubMed]
  • Goldstein IM, Roos D, Kaplan HB, Weissmann G. Complement and immunoglobulins stimulate superoxide production by human leukocytes independently of phagocytosis. J Clin Invest. 1975 Nov;56(5):1155–1163. [PMC free article] [PubMed]
  • Johnston RB, Jr, Lehmeyer JE. Elaboration of toxic oxygen by-products by neutrophils in a model of immune complex disease. J Clin Invest. 1976 Apr;57(4):836–841. [PMC free article] [PubMed]
  • Webster RO, Hong SR, Johnston RB, Jr, Henson PM. Biologial effects of the human complement fragments C5a and C5ades Arg on neutrophil function. Immunopharmacology. 1980 Jun;2(3):201–219. [PubMed]
  • Simchowitz L, Spilberg I. Chemotactic factor-induced generation of superoxide radicals by human neutrophils: evidence for the role of sodium. J Immunol. 1979 Nov;123(5):2428–2435. [PubMed]
  • Becker EL, Sigman M, Oliver JM. Superoxide production induced in rabbit polymorphonuclear leukocytes by synthetic chemotactic peptides and A23187. Am J Pathol. 1979 Apr;95(1):81–97. [PMC free article] [PubMed]
  • Sumimoto H, Takeshige K, Minakami S. Superoxide production of human polymorphonuclear leukocytes stimulated by leukotriene B4. Biochim Biophys Acta. 1984 Apr 16;803(4):271–277. [PubMed]
  • Shaw JO, Pinckard RN, Ferrigni KS, McManus LM, Hanahan DJ. Activation of human neutrophils with 1-O-hexadecyl/octadecyl-2-acetyl-sn-glycerol-3-phosphorylcholine (platelet activating factor). J Immunol. 1981 Sep;127(3):1250–1255. [PubMed]
  • Badwey JA, Curnutte JT, Karnovsky ML. cis-Polyunsaturated fatty acids induce high levels of superoxide production by human neutrophils. J Biol Chem. 1981 Dec 25;256(24):12640–12643. [PubMed]
  • Badwey JA, Robinson JM, Curnutte JT, Karnovsky MJ, Karnovsky ML. Retinoids stimulate the release of superoxide by neutrophils and change their morphology. J Cell Physiol. 1986 May;127(2):223–228. [PubMed]
  • Klempner MS, Dinarello CA, Henderson WR, Gallin JI. Stimulation of neutrophil oxygen-dependent metabolism by human leukocytic pyrogen. J Clin Invest. 1979 Oct;64(4):996–1002. [PMC free article] [PubMed]
  • Berton G, Zeni L, Cassatella MA, Rossi F. Gamma interferon is able to enhance the oxidative metabolism of human neutrophils. Biochem Biophys Res Commun. 1986 Aug 14;138(3):1276–1282. [PubMed]
  • Perussia B, Kobayashi M, Rossi ME, Anegon I, Trinchieri G. Immune interferon enhances functional properties of human granulocytes: role of Fc receptors and effect of lymphotoxin, tumor necrosis factor, and granulocyte-macrophage colony-stimulating factor. J Immunol. 1987 Feb 1;138(3):765–774. [PubMed]
  • Klebanoff SJ, Vadas MA, Harlan JM, Sparks LH, Gamble JR, Agosti JM, Waltersdorph AM. Stimulation of neutrophils by tumor necrosis factor. J Immunol. 1986 Jun 1;136(11):4220–4225. [PubMed]
  • Tsujimoto M, Yokota S, Vilcek J, Weissmann G. Tumor necrosis factor provokes superoxide anion generation from neutrophils. Biochem Biophys Res Commun. 1986 Jun 30;137(3):1094–1100. [PubMed]
  • Larrick JW, Graham D, Toy K, Lin LS, Senyk G, Fendly BM. Recombinant tumor necrosis factor causes activation of human granulocytes. Blood. 1987 Feb;69(2):640–644. [PubMed]
  • Shalaby MR, Palladino MA, Jr, Hirabayashi SE, Eessalu TE, Lewis GD, Shepard HM, Aggarwal BB. Receptor binding and activation of polymorphonuclear neutrophils by tumor necrosis factor-alpha. J Leukoc Biol. 1987 Mar;41(3):196–204. [PubMed]
  • Makino R, Tanaka T, Iizuka T, Ishimura Y, Kanegasaki S. Stoichiometric conversion of oxygen to superoxide anion during the respiratory burst in neutrophils. Direct evidence by a new method for measurement of superoxide anion with diacetyldeuteroheme-substituted horseradish peroxidase. J Biol Chem. 1986 Sep 5;261(25):11444–11447. [PubMed]
  • Fehr J, Moser R, Leppert D, Groscurth P. Antiadhesive properties of biological surfaces are protective against stimulated granulocytes. J Clin Invest. 1985 Aug;76(2):535–542. [PMC free article] [PubMed]
  • Ferrante A, Thong YH. Optimal conditions for simultaneous purification of mononuclear and polymorphonuclear leucocytes from human blood by the Hypaque-Ficoll method. J Immunol Methods. 1980;36(2):109–117. [PubMed]
  • De la Harpe J, Nathan CF. A semi-automated micro-assay for H2O2 release by human blood monocytes and mouse peritoneal macrophages. J Immunol Methods. 1985 Apr 22;78(2):323–336. [PubMed]
  • Asch AS, Kinoshita T, Jaffe EA, Nussenzweig V. Decay-accelerating factor is present on cultured human umbilical vein endothelial cells. J Exp Med. 1986 Jan 1;163(1):221–226. [PMC free article] [PubMed]
  • Aggarwal BB, Henzel WJ, Moffat B, Kohr WJ, Harkins RN. Primary structure of human lymphotoxin derived from 1788 lymphoblastoid cell line. J Biol Chem. 1985 Feb 25;260(4):2334–2344. [PubMed]
  • Nathan CF, Prendergast TJ, Wiebe ME, Stanley ER, Platzer E, Remold HG, Welte K, Rubin BY, Murray HW. Activation of human macrophages. Comparison of other cytokines with interferon-gamma. J Exp Med. 1984 Aug 1;160(2):600–605. [PMC free article] [PubMed]
  • Guthrie LA, McPhail LC, Henson PM, Johnston RB., Jr Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme. J Exp Med. 1984 Dec 1;160(6):1656–1671. [PMC free article] [PubMed]
  • Root RK, Metcalf J, Oshino N, Chance B. H2O2 release from human granulocytes during phagocytosis. I. Documentation, quantitation, and some regulating factors. J Clin Invest. 1975 May;55(5):945–955. [PMC free article] [PubMed]
  • Royer-Pokora B, Kunkel LM, Monaco AP, Goff SC, Newburger PE, Baehner RL, Cole FS, Curnutte JT, Orkin SH. Cloning the gene for an inherited human disorder--chronic granulomatous disease--on the basis of its chromosomal location. Nature. 1986 Jul 3;322(6074):32–38. [PubMed]
  • Segal AW. Absence of both cytochrome b-245 subunits from neutrophils in X-linked chronic granulomatous disease. Nature. 1987 Mar 5;326(6108):88–91. [PubMed]
  • Marasco WA, Phan SH, Krutzsch H, Showell HJ, Feltner DE, Nairn R, Becker EL, Ward PA. Purification and identification of formyl-methionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J Biol Chem. 1984 May 10;259(9):5430–5439. [PubMed]
  • Carp H. Mitochondrial N-formylmethionyl proteins as chemoattractants for neutrophils. J Exp Med. 1982 Jan 1;155(1):264–275. [PMC free article] [PubMed]
  • Wright GG, Mandell GL. Anthrax toxin blocks priming of neutrophils by lipopolysaccharide and by muramyl dipeptide. J Exp Med. 1986 Nov 1;164(5):1700–1709. [PMC free article] [PubMed]
  • Platzer E, Welte K, Gabrilove JL, Lu L, Harris P, Mertelsmann R, Moore MA. Biological activities of a human pluripotent hemopoietic colony stimulating factor on normal and leukemic cells. J Exp Med. 1985 Dec 1;162(6):1788–1801. [PMC free article] [PubMed]
  • Weisbart RH, Golde DW, Gasson JC. Biosynthetic human GM-CSF modulates the number and affinity of neutrophil f-Met-Leu-Phe receptors. J Immunol. 1986 Dec 1;137(11):3584–3587. [PubMed]
  • Balazovich KJ, Smolen JE, Boxer LA. Endogenous inhibitor of protein kinase C: association with human peripheral blood neutrophils but not with specific granule-deficient neutrophils or cytoplasts. J Immunol. 1986 Sep 1;137(5):1665–1673. [PubMed]
  • Gamble JR, Harlan JM, Klebanoff SJ, Vadas MA. Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8667–8671. [PMC free article] [PubMed]
  • Tzeng DY, Deuel TF, Huang JS, Senior RM, Boxer LA, Baehner RL. Platelet-derived growth factor promotes polymorphonuclear leukocyte activation. Blood. 1984 Nov;64(5):1123–1128. [PubMed]
  • Dahinden CA, Fehr J, Hugli TE. Role of cell surface contact in the kinetics of superoxide production by granulocytes. J Clin Invest. 1983 Jul;72(1):113–121. [PMC free article] [PubMed]
  • Pommier CG, O'Shea J, Chused T, Yancey K, Frank MM, Takahashi T, Brown EJ. Studies on the fibronectin receptors of human peripheral blood leukocytes. Morphologic and functional characterization. J Exp Med. 1984 Jan 1;159(1):137–151. [PMC free article] [PubMed]
  • Yoon PS, Boxer LA, Mayo LA, Yang AY, Wicha MS. Human neutrophil laminin receptors: activation-dependent receptor expression. J Immunol. 1987 Jan 1;138(1):259–265. [PubMed]
  • Hynes RO. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. [PubMed]
  • Hirai M, Okamura N, Terano Y, Tsujimoto M, Nakazato H. Production and characterization of monoclonal antibodies to human tumor necrosis factor. J Immunol Methods. 1987 Jan 26;96(1):57–62. [PubMed]
  • Beutler BA, Milsark IW, Cerami A. Cachectin/tumor necrosis factor: production, distribution, and metabolic fate in vivo. J Immunol. 1985 Dec;135(6):3972–3977. [PubMed]
  • Abe S, Gatanaga T, Yamazaki M, Soma G, Mizuno D. Purification of rabbit tumor necrosis factor. FEBS Lett. 1985 Jan 28;180(2):203–206. [PubMed]
  • Wright SD, Licht MR, Craigmyle LS, Silverstein SC. Communication between receptors for different ligands on a single cell: ligation of fibronectin receptors induces a reversible alteration in the function of complement receptors on cultured human monocytes. J Cell Biol. 1984 Jul;99(1 Pt 1):336–339. [PMC free article] [PubMed]
  • Jesaitis AJ, Tolley JO, Allen RA. Receptor-cytoskeleton interactions and membrane traffic may regulate chemoattractant-induced superoxide production in human granulocytes. J Biol Chem. 1986 Oct 15;261(29):13662–13669. [PubMed]
  • Schleimer RP, Rutledge BK. Cultured human vascular endothelial cells acquire adhesiveness for neutrophils after stimulation with interleukin 1, endotoxin, and tumor-promoting phorbol diesters. J Immunol. 1986 Jan;136(2):649–654. [PubMed]
  • Tracey KJ, Beutler B, Lowry SF, Merryweather J, Wolpe S, Milsark IW, Hariri RJ, Fahey TJ, 3rd, Zentella A, Albert JD, et al. Shock and tissue injury induced by recombinant human cachectin. Science. 1986 Oct 24;234(4775):470–474. [PubMed]
  • STETSON CA., Jr Studies on the mechanism of the Shwartzman phenomenon; certain factors involved in the production of the local hemorrhagic necrosis. J Exp Med. 1951 May;93(5):489–504. [PMC free article] [PubMed]
  • Smedly LA, Tonnesen MG, Sandhaus RA, Haslett C, Guthrie LA, Johnston RB, Jr, Henson PM, Worthen GS. Neutrophil-mediated injury to endothelial cells. Enhancement by endotoxin and essential role of neutrophil elastase. J Clin Invest. 1986 Apr;77(4):1233–1243. [PMC free article] [PubMed]
  • Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3666–3670. [PMC free article] [PubMed]
  • Berendt MJ, North RJ, Kirstein DP. The immunological basis of endotoxin-induced tumor regression. Requirement for T-cell-mediated immunity. J Exp Med. 1978 Dec 1;148(6):1550–1559. [PMC free article] [PubMed]
  • Nathan CF, Arrick BA, Murray HW, DeSantis NM, Cohn ZA. Tumor cell anti-oxidant defenses. Inhibition of the glutathione redox cycle enhances macrophage-mediated cytolysis. J Exp Med. 1981 Apr 1;153(4):766–782. [PMC free article] [PubMed]
  • Arrick BA, Nathan CF, Griffith OW, Cohn ZA. Glutathione depletion sensitizes tumor cells to oxidative cytolysis. J Biol Chem. 1982 Feb 10;257(3):1231–1237. [PubMed]
  • Arrick BA, Nathan CF, Cohn ZA. Inhibition of glutathione synthesis augments lysis of murine tumor cells by sulfhydryl-reactive antineoplastics. J Clin Invest. 1983 Feb;71(2):258–267. [PMC free article] [PubMed]
  • Harlan JM, Levine JD, Callahan KS, Schwartz BR, Harker LA. Glutathione redox cycle protects cultured endothelial cells against lysis by extracellularly generated hydrogen peroxide. J Clin Invest. 1984 Mar;73(3):706–713. [PMC free article] [PubMed]
  • Thorens B, Mermod JJ, Vassalli P. Phagocytosis and inflammatory stimuli induce GM-CSF mRNA in macrophages through posttranscriptional regulation. Cell. 1987 Feb 27;48(4):671–679. [PubMed]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem Compound links
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...