• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Apr 26, 1994; 91(9): 3652–3656.
PMCID: PMC43639

Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant.

Abstract

We have utilized a transendothelial lymphocyte chemotaxis assay to identify and purify a lymphocyte chemoattractant in supernatants of mitogen-stimulated peripheral blood mononuclear cells. Amino acid sequence analysis revealed identity with monocyte chemoattractant protein 1 (MCP-1), a chemoattractant previously thought to be specific for monocytes. Recombinant MCP-1 is chemoattractive for purified T lymphocytes and for CD3+ lymphocytes in peripheral blood lymphocyte preparations. The T-cell response to MCP-1 is dose-dependent and chemotactic, rather than chemokinetic. Phenotyping of chemoattracted T lymphocytes shows they are an activated memory subset. The response to MCP-1 by T lymphocytes can be duplicated in the absence of an endothelial monolayer and the majority of T-lymphocyte chemotactic activity in mitogen-stimulated peripheral blood mononuclear cell supernatants can be neutralized by antibody to MCP-1. Thus, MCP-1 is the major lymphocyte chemoattractant secreted by mitogen-stimulated peripheral blood mononuclear cells and is capable of acting as a potent T-lymphocyte, as well as monocyte, chemoattractant. This may help explain why monocytes and T lymphocytes of the memory subset are always found together at sites of antigen-induced inflammation.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Janossy G, Bofill M, Rowe D, Muir J, Beverley PC. The tissue distribution of T lymphocytes expressing different CD45 polypeptides. Immunology. 1989 Apr;66(4):517–525. [PMC free article] [PubMed]
  • Pitzalis C, Kingsley G, Haskard D, Panayi G. The preferential accumulation of helper-inducer T lymphocytes in inflammatory lesions: evidence for regulation by selective endothelial and homotypic adhesion. Eur J Immunol. 1988 Sep;18(9):1397–1404. [PubMed]
  • MCCLUSKEY RT, BENACERRAF B, MCCLUSKEY JW. STUDIES ON THE SPECIFICITY OF THE CELLULAR INFILTRATE IN DELAYED HYPERSENSITIVITY REACTIONS. J Immunol. 1963 Mar;90:466–477. [PubMed]
  • Berman JS, Cruikshank WW, Beer DJ, Kornfeld H, Bernardo J, Theodore AC, Center DM. Lymphocyte motility and lymphocyte chemoattractant factors. Immunol Invest. 1988 Nov-Dec;17(8-9):625–677. [PubMed]
  • Center DM, Cruikshank W. Modulation of lymphocyte migration by human lymphokines. I. Identification and characterization of chemoattractant activity for lymphocytes from mitogen-stimulated mononuclear cells. J Immunol. 1982 Jun;128(6):2563–2568. [PubMed]
  • Van Epps DE, Potter JW, Durant DA. Production of a human T lymphocyte chemotactic factor by T cell subpopulations. J Immunol. 1983 Jun;130(6):2727–2731. [PubMed]
  • Larsen CG, Anderson AO, Appella E, Oppenheim JJ, Matsushima K. The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science. 1989 Mar 17;243(4897):1464–1466. [PubMed]
  • Taub DD, Lloyd AR, Conlon K, Wang JM, Ortaldo JR, Harada A, Matsushima K, Kelvin DJ, Oppenheim JJ. Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J Exp Med. 1993 Jun 1;177(6):1809–1814. [PMC free article] [PubMed]
  • Schall TJ, Bacon K, Toy KJ, Goeddel DV. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature. 1990 Oct 18;347(6294):669–671. [PubMed]
  • Taub DD, Conlon K, Lloyd AR, Oppenheim JJ, Kelvin DJ. Preferential migration of activated CD4+ and CD8+ T cells in response to MIP-1 alpha and MIP-1 beta. Science. 1993 Apr 16;260(5106):355–358. [PubMed]
  • Schall TJ, Bacon K, Camp RD, Kaspari JW, Goeddel DV. Human macrophage inflammatory protein alpha (MIP-1 alpha) and MIP-1 beta chemokines attract distinct populations of lymphocytes. J Exp Med. 1993 Jun 1;177(6):1821–1826. [PMC free article] [PubMed]
  • Tanaka Y, Adams DH, Hubscher S, Hirano H, Siebenlist U, Shaw S. T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1 beta. Nature. 1993 Jan 7;361(6407):79–82. [PubMed]
  • Leonard EJ, Yoshimura T. Human monocyte chemoattractant protein-1 (MCP-1). Immunol Today. 1990 Mar;11(3):97–101. [PubMed]
  • Oppenheim JJ, Zachariae CO, Mukaida N, Matsushima K. Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu Rev Immunol. 1991;9:617–648. [PubMed]
  • Dustin ML, Springer TA. Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells. J Cell Biol. 1988 Jul;107(1):321–331. [PMC free article] [PubMed]
  • de Fougerolles AR, Stacker SA, Schwarting R, Springer TA. Characterization of ICAM-2 and evidence for a third counter-receptor for LFA-1. J Exp Med. 1991 Jul 1;174(1):253–267. [PMC free article] [PubMed]
  • Miltenyi S, Müller W, Weichel W, Radbruch A. High gradient magnetic cell separation with MACS. Cytometry. 1990;11(2):231–238. [PubMed]
  • Gimbrone MA., Jr Culture of vascular endothelium. Prog Hemost Thromb. 1976;3:1–28. [PubMed]
  • Lane WS, Galat A, Harding MW, Schreiber SL. Complete amino acid sequence of the FK506 and rapamycin binding protein, FKBP, isolated from calf thymus. J Protein Chem. 1991 Apr;10(2):151–160. [PubMed]
  • Robinson EA, Yoshimura T, Leonard EJ, Tanaka S, Griffin PR, Shabanowitz J, Hunt DF, Appella E. Complete amino acid sequence of a human monocyte chemoattractant, a putative mediator of cellular immune reactions. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1850–1854. [PMC free article] [PubMed]
  • Furutani Y, Nomura H, Notake M, Oyamada Y, Fukui T, Yamada M, Larsen CG, Oppenheim JJ, Matsushima K. Cloning and sequencing of the cDNA for human monocyte chemotactic and activating factor (MCAF). Biochem Biophys Res Commun. 1989 Feb 28;159(1):249–255. [PubMed]
  • Yoshimura T, Robinson EA, Tanaka S, Appella E, Kuratsu J, Leonard EJ. Purification and amino acid analysis of two human glioma-derived monocyte chemoattractants. J Exp Med. 1989 Apr 1;169(4):1449–1459. [PMC free article] [PubMed]
  • Matsushima K, Larsen CG, DuBois GC, Oppenheim JJ. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med. 1989 Apr 1;169(4):1485–1490. [PMC free article] [PubMed]
  • Zachariae CO, Anderson AO, Thompson HL, Appella E, Mantovani A, Oppenheim JJ, Matsushima K. Properties of monocyte chemotactic and activating factor (MCAF) purified from a human fibrosarcoma cell line. J Exp Med. 1990 Jun 1;171(6):2177–2182. [PMC free article] [PubMed]
  • Mackay CR. Migration pathways and immunologic memory among T lymphocytes. Semin Immunol. 1992 Feb;4(1):51–58. [PubMed]
  • Hegen M, Niedobitek G, Klein CE, Stein H, Fleischer B. The T cell triggering molecule Tp103 is associated with dipeptidyl aminopeptidase IV activity. J Immunol. 1990 Apr 15;144(8):2908–2914. [PubMed]
  • Mattern T, Scholz W, Feller AC, Flad HD, Ulmer AJ. Expression of CD26 (dipeptidyl peptidase IV) on resting and activated human T-lymphocytes. Scand J Immunol. 1991 Jun;33(6):737–748. [PubMed]
  • Parrott DM, Wilkinson PC. Lymphocyte locomotion and migration. Prog Allergy. 1981;28:193–284. [PubMed]
  • Yoshimura T, Robinson EA, Tanaka S, Appella E, Leonard EJ. Purification and amino acid analysis of two human monocyte chemoattractants produced by phytohemagglutinin-stimulated human blood mononuclear leukocytes. J Immunol. 1989 Mar 15;142(6):1956–1962. [PubMed]
  • Lauffenburger DA, Zigmond SH. Chemotactic factor concentration gradients in chemotaxis assay systems. J Immunol Methods. 1981;40(1):45–60. [PubMed]
  • Villiger PM, Terkeltaub R, Lotz M. Production of monocyte chemoattractant protein-1 by inflamed synovial tissue and cultured synoviocytes. J Immunol. 1992 Jul 15;149(2):722–727. [PubMed]
  • Jones ML, Warren JS. Monocyte chemoattractant protein 1 in a rat model of pulmonary granulomatosis. Lab Invest. 1992 Apr;66(4):498–503. [PubMed]
  • Koch AE, Kunkel SL, Harlow LA, Johnson B, Evanoff HL, Haines GK, Burdick MD, Pope RM, Strieter RM. Enhanced production of monocyte chemoattractant protein-1 in rheumatoid arthritis. J Clin Invest. 1992 Sep;90(3):772–779. [PMC free article] [PubMed]
  • Damle NK, Doyle LV. Ability of human T lymphocytes to adhere to vascular endothelial cells and to augment endothelial permeability to macromolecules is linked to their state of post-thymic maturation. J Immunol. 1990 Feb 15;144(4):1233–1240. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...