• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Dec 1977; 74(12): 5647–5651.
PMCID: PMC431845

Design of molecular control mechanisms and the demand for gene expression.

Abstract

Regulation by a repressor protein is the mechanism selected when, in the organism's natural environment, there is low demand for expression of the regulated structural genes. Regulation by an activator protein is selected when there is high demand for expression of the regulated structural genes. These general conclusions are useful in relating physiological function to underlying molecular determinants in a wide variety of systems that includes repressible biosynthetic pathways, inducible biosynthetic enzymes, inducible drug resistance, and prophage induction, as well as inducible catabolic pathways, for which a special case of this prediction previously was reported [Savageau, M. A. (1974) Proc. Natl. Acad. Sci. USA 71, 2453-2455].

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Savageau MA. Genetic regulatory mechanisms and the ecological niche of Escherichia coli. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2453–2455. [PMC free article] [PubMed]
  • Nakanishi S, Adhya S, Gottesman ME, Pastan I. In vitro repression of the transcription of gas operon by purified gal repressor. Proc Natl Acad Sci U S A. 1973 Feb;70(2):334–338. [PMC free article] [PubMed]
  • Cozzarelli NR, Freedberg WB, Lin EC. Genetic control of L-alpha-glycerophosphate system in Escherichia coli. J Mol Biol. 1968 Feb 14;31(3):371–387. [PubMed]
  • Smith GR, Magasanik B. Nature and self-regulated synthesis of the repressor of the hut operons in Salmonella typhimurium. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1493–1497. [PMC free article] [PubMed]
  • Wilcox G, Clemetson KJ, Santi DV, Englesberg E. Purification of the araC protein. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2145–2148. [PMC free article] [PubMed]
  • Hofnung M, Schwartz M. Mutations allowing growth on maltose of Escherichia coli K 12 strains with a deleted malT gene. Mol Gen Genet. 1971;112(2):117–132. [PubMed]
  • Power J. The L-rhamnose genetic system in Escherichia coli K-12. Genetics. 1967 Mar;55(3):557–568. [PMC free article] [PubMed]
  • Bihler I. Intestinal sugar transport: ionic activation and chemical specificity. Biochim Biophys Acta. 1969 Jun 3;183(1):169–181. [PubMed]
  • DAVIS BD. The teleonomic significance of biosynthetic control mechanisms. Cold Spring Harb Symp Quant Biol. 1961;26:1–10. [PubMed]
  • Zamenhof S, Eichhorn HH. Study of microbial evolution through loss of biosynthetic functions: establishment of "defective" mutants. Nature. 1967 Nov 4;216(5114):456–458. [PubMed]
  • Zubay G, Morse DE, Schrenk WJ, Miller JH. Detection and isolation of the repressor protein for the tryptophan operon of Escherichia coli. Proc Natl Acad Sci U S A. 1972 May;69(5):1100–1103. [PMC free article] [PubMed]
  • Squires CL, Rose JK, Yanofsky C, Yang HL, Zubay G. Tryptophanyl-tRNA and tryptophanyl-tRNA synthetase are not required for in vitro repression of the tryptophan operon. Nat New Biol. 1973 Oct 3;245(144):131–133. [PubMed]
  • Rose JK, Squires CL, Yanofsky C, Yang HL, Zubay G. Regulation of in vitro transcription of the tryptophan operon by purified RNA polymerase in the presence of partially purified repressor and tryptophan. Nat New Biol. 1973 Oct 3;245(144):133–137. [PubMed]
  • McGeoch D, McGeoch J, Morse D. Synthesis of tryptophan operon RNA in a cell-free system. Nat New Biol. 1973 Oct 3;245(144):137–140. [PubMed]
  • Zalkin H, Yanofsky C, Squires CL. Regulated in vitro synthesis of Escherichia coli tryptophan operon messenger ribonucleic acid and enzymes. J Biol Chem. 1974 Jan 25;249(2):465–475. [PubMed]
  • Shimizu N, Shimizu Y, Fujimura FK, Hayashi M. Repression of tryptophan operon RNA synthesis by trp repressor in an in vitro coupled transcription-translation system. FEBS Lett. 1974 Mar 15;40(1):80–83. [PubMed]
  • Urm E, Yang H, Zubay G, Kelker N, Maas W. In vitro repression of n- -acetyl-L-ornithinase synthesis in Escherichia coli. Mol Gen Genet. 1973;121(1):1–7. [PubMed]
  • Cunin R, Kelker N, Boyen A, Yang H, Zubay G, Glansdorff N, Maas WK. Involvement of arginine in in vitro repression of transcription of arginine genes C, B and H in Escherichia coli K 12. Biochem Biophys Res Commun. 1976 Mar 22;69(2):377–382. [PubMed]
  • Jones-Mortimer MC. Positive control of sulphate reduction in Escherichia coli. The nature of the pleiotropic cysteineless mutants of E. coli K12. Biochem J. 1968 Dec;110(3):597–602. [PMC free article] [PubMed]
  • Kredich NM. Regulation of L-cysteine biosynthesis in Salmonella typhimurium. I. Effects of growth of varying sulfur sources and O-acetyl-L-serine on gene expression. J Biol Chem. 1971 Jun 10;246(11):3474–3484. [PubMed]
  • Bollon AP, Magee PT. Involvement of threonine deaminase in multivalent repression of the isoleucine-valine pathway in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2169–2172. [PMC free article] [PubMed]
  • Bollon AP, Magee PT. Involvement of threonine deaminase in repression of the isoleucine-valine and leucine pathways in Saccharomyces cerevisiae. J Bacteriol. 1973 Mar;113(3):1333–1344. [PMC free article] [PubMed]
  • Bollon AP. Fine structure analysis of a eukaryotic multifunctional gene. Nature. 1974 Aug 23;250(5468):630–634. [PubMed]
  • Bollon AP. Regulation of the ilv 1 multifunctional gene in Saccharomyces cerevisiae. Mol Gen Genet. 1975 Dec 23;142(1):1–12. [PubMed]
  • Kelleher RJ, Jr, Heggeness M. Repression of diaminopimelic acid decarboxylase in Escherichia coli: gene dosage effects and escape synthesis. J Bacteriol. 1976 Jan;125(1):376–378. [PMC free article] [PubMed]
  • Adibi SA, Gray SJ, Menden E. The kinetics of amino acid absorption and alteration of plasma composition of free amino acids after intestinal perfusion of amino acid mixtures. Am J Clin Nutr. 1967 Jan;20(1):24–33. [PubMed]
  • Adibi SA, Gray SJ. Intestinal absorption of essential amino acids in man. Gastroenterology. 1967 May;52(5):837–845. [PubMed]
  • DeMoss RD, Moser K. Tryptophanase in diverse bacterial species. J Bacteriol. 1969 Apr;98(1):167–171. [PMC free article] [PubMed]
  • Nixon SE, Mawer GE. The digestion and absorption of protein in man. 2. The form in which digested protein is absorbed. Br J Nutr. 1970 Mar;24(1):241–258. [PubMed]
  • GIBSON QH, WISEMAN G. Selective absorption of stereo-isomers of amino-acids from loops of the small intestine of the rat. Biochem J. 1951 Apr;48(4):426–429. [PMC free article] [PubMed]
  • Artz SW, Broach JR. Histidine regulation in Salmonella typhimurium: an activator attenuator model of gene regulation. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3453–3457. [PMC free article] [PubMed]
  • FINCH LR, HIRD FJ. The uptake of amino acids by isolated segments of rat intestine. II. A survey of affinity for uptake from rates of uptake and competition for uptake. Biochim Biophys Acta. 1960 Sep 23;43:278–287. [PubMed]
  • Levinthal M, Williams LS, Umbarger HE. Role of threonine deaminase in the regulation of isoleucine and valine biosynthesis. Nat New Biol. 1973 Nov 21;246(151):65–68. [PubMed]
  • Crawford IP, Gunsalus IC. Inducibility of tryptophan synthetase in Pseudomonas putida. Proc Natl Acad Sci U S A. 1966 Aug;56(2):717–724. [PMC free article] [PubMed]
  • Maurer R, Crawford IP. New regulatory mutation affecting some of the tryptophan genes in Pseudomonas putida. J Bacteriol. 1971 May;106(2):331–338. [PMC free article] [PubMed]
  • Calhoun DH, Pierson DL, Jensen RA. The regulation of tryptophan biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet. 1973 Mar 1;121(2):117–132. [PubMed]
  • Ratzkin B, Arfin S, Umbarger HE. Isoleucine and valine metabolism in Escherichia coli. 18. Induction of acetohydroxy acid isomeroreductase. J Bacteriol. 1972 Oct;112(1):131–141. [PMC free article] [PubMed]
  • Pledger WJ, Umbarger HE. Isoleucine and valine metabolism in Escherichia coli. XXII. A pleiotropic mutation affecting induction of isomeroreductase activity. J Bacteriol. 1973 Apr;114(1):195–207. [PMC free article] [PubMed]
  • Proctor AR, Crawford IP. Autogenous regulation of the inducible tryptophan synthase of Pseudomonas putida. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1249–1253. [PMC free article] [PubMed]
  • Proctor AR, Crawford IP. Evidence for autogenous regulation of Pseudomonas putida tryptophan synthase. J Bacteriol. 1976 Apr;126(1):547–549. [PMC free article] [PubMed]
  • Anderson ES. The ecology of transferable drug resistance in the enterobacteria. Annu Rev Microbiol. 1968;22:131–180. [PubMed]
  • Watanabe T. Infectious drug resistance in bacteria. Curr Top Microbiol Immunol. 1971;56:43–98. [PubMed]
  • Davies JE, Rownd R. Transmissible multiple drug resistance in Enterobacteriaceae. Science. 1972 May 19;176(4036):758–768. [PubMed]
  • Rownd R, Mickel S. Dissociation and reassociation of RTF and r-determinants of the R-factor NR1 in Proteus mirabilis. Nat New Biol. 1971 Nov 10;234(45):40–43. [PubMed]
  • Yang HL, Zubay G, Levy SB. Synthesis of an R plasmid protein associated with tetracycline resistance is negatively regulated. Proc Natl Acad Sci U S A. 1976 May;73(5):1509–1512. [PMC free article] [PubMed]
  • Kelly LE, Brammar WJ. A frameshift mutation that elongates the penicillinase protein of Bacillus licheniformis. J Mol Biol. 1973 Oct 15;80(1):135–147. [PubMed]
  • Imsande J, Lilleholm JL. Characterization of mutations in the penicillinase operon Staphylococcus aureus. Mol Gen Genet. 1976 Aug 10;147(1):23–27. [PubMed]
  • Weisblum B, Siddhikol C, Lai CJ, Demohn V. Erythromycin-inducible resistance in Staphylococcus aureus: requirements for induction. J Bacteriol. 1971 Jun;106(3):835–847. [PMC free article] [PubMed]
  • Winshell E, Shaw WV. Kinetics of induction and purification of chloramphenicol acetyltransferase from chloramphenicol-resistant Staphylococcus aureus. J Bacteriol. 1969 Jun;98(3):1248–1257. [PMC free article] [PubMed]
  • Echols H. Developmental pathways for the temperate phage: lysis vs lysogeny,. Annu Rev Genet. 1972;6(0):157–190. [PubMed]
  • Ptashne M, Backman K, Humayun MZ, Jeffrey A, Maurer R, Meyer B, Sauer RT. Autoregulation and function of a repressor in bacteriophage lambda. Science. 1976 Oct 8;194(4261):156–161. [PubMed]
  • Scott JR. Clear plaque mutants of phage P1. Virology. 1970 May;41(1):66–71. [PubMed]
  • Bertani LE, Bertani G. Genetics of P2 and related phages. Adv Genet. 1971;16:199–237. [PubMed]
  • Levine M. Replication and lysogeny with phage P22 in Salmonella typhimurium. Curr Top Microbiol Immunol. 1972;58:135–156. [PubMed]
  • Barksdale L, Arden SB. Persisting bacteriophage infections, lysogeny, and phage conversions. Annu Rev Microbiol. 1974;28(0):265–299. [PubMed]
  • Reanney D. Extrachromosomal elements as possible agents of adaptation and development. Bacteriol Rev. 1976 Sep;40(3):552–590. [PMC free article] [PubMed]
  • Davis FM, Adelberg EA. Use of somatic cell hybrids for analysis of the differentiated state. Bacteriol Rev. 1973 Jun;37(2):197–214. [PMC free article] [PubMed]
  • Davidson RL. Gene expression in somatic cell hybrids. Annu Rev Genet. 1974;8:195–218. [PubMed]
  • Bernhard HP. The control of gene expression in somatic cell hybrids. Int Rev Cytol. 1976;47:289–325. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...