• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Feb 14, 1995; 92(4): 1213–1217.
PMCID: PMC42669

Identification of galectin-3 as a factor in pre-mRNA splicing.

Abstract

Galectin-3 (M(r) approximately 35,000) is a galactose/lactose-specific lectin found in association with ribonucleoprotein complexes in many animal cells. Cell-free-splicing assays have been carried out to study the requirement for galectin-3 in RNA processing by HeLa cell nuclear extracts by using 32P-labeled MINX as the pre-mRNA substrate. Addition of saccharides that bind galectin-3 with high affinity inhibited product formation in the splicing assay, while addition of carbohydrates that do not bind to the lectin did not inhibit product formation. Nuclear extracts depleted of galectin-3 by affinity adsorption on a lactose-agarose column were deficient in splicing activity. Extracts subjected to parallel adsorption on control cellobiose-agarose retained splicing activity. The activity of the galectin-3-depleted extract could be reconstituted by the addition of purified recombinant galectin-3, whereas the addition of other lectins, either with a similar saccharide binding specificity (soybean agglutinin) or with a different specificity (wheat germ agglutinin), did not restore splicing activity. The formation of splicing complexes was also sensitive to galectin-3 depletion and reconstitution. Together, these results define a requirement for galectin-3 in pre-mRNA splicing and identify it as a splicing factor.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.5M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Barondes SH, Castronovo V, Cooper DN, Cummings RD, Drickamer K, Feizi T, Gitt MA, Hirabayashi J, Hughes C, Kasai K, et al. Galectins: a family of animal beta-galactoside-binding lectins. Cell. 1994 Feb 25;76(4):597–598. [PubMed]
  • Cherayil BJ, Weiner SJ, Pillai S. The Mac-2 antigen is a galactose-specific lectin that binds IgE. J Exp Med. 1989 Dec 1;170(6):1959–1972. [PMC free article] [PubMed]
  • Albrandt K, Orida NK, Liu FT. An IgE-binding protein with a distinctive repetitive sequence and homology with an IgG receptor. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6859–6863. [PMC free article] [PubMed]
  • Leffler H, Masiarz FR, Barondes SH. Soluble lactose-binding vertebrate lectins: a growing family. Biochemistry. 1989 Nov 14;28(23):9222–9229. [PubMed]
  • Raz A, Pazerini G, Carmi P. Identification of the metastasis-associated, galactoside-binding lectin as a chimeric gene product with homology to an IgE-binding protein. Cancer Res. 1989 Jul 1;49(13):3489–3493. [PubMed]
  • Wang JL, Werner EA, Laing JG, Patterson RJ. Nuclear and cytoplasmic localization of a lectin-ribonucleoprotein complex. Biochem Soc Trans. 1992 May;20(2):269–274. [PubMed]
  • Cowles EA, Agrwal N, Anderson RL, Wang JL. Carbohydrate-binding protein 35. Isoelectric points of the polypeptide and a phosphorylated derivative. J Biol Chem. 1990 Oct 15;265(29):17706–17712. [PubMed]
  • Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. [PMC free article] [PubMed]
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Agrwal N, Sun Q, Wang SY, Wang JL. Carbohydrate-binding protein 35. I. Properties of the recombinant polypeptide and the individuality of the domains. J Biol Chem. 1993 Jul 15;268(20):14932–14939. [PubMed]
  • Zillmann M, Zapp ML, Berget SM. Gel electrophoretic isolation of splicing complexes containing U1 small nuclear ribonucleoprotein particles. Mol Cell Biol. 1988 Feb;8(2):814–821. [PMC free article] [PubMed]
  • Konarska MM, Sharp PA. Electrophoretic separation of complexes involved in the splicing of precursors to mRNAs. Cell. 1986 Sep 12;46(6):845–855. [PubMed]
  • Ho MK, Springer TA. Mac-2, a novel 32,000 Mr mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies. J Immunol. 1982 Mar;128(3):1221–1228. [PubMed]
  • Leffler H, Barondes SH. Specificity of binding of three soluble rat lung lectins to substituted and unsubstituted mammalian beta-galactosides. J Biol Chem. 1986 Aug 5;261(22):10119–10126. [PubMed]
  • Krainer AR, Maniatis T, Ruskin B, Green MR. Normal and mutant human beta-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell. 1984 Apr;36(4):993–1005. [PubMed]
  • Konarska MM, Padgett RA, Sharp PA. Recognition of cap structure in splicing in vitro of mRNA precursors. Cell. 1984 Oct;38(3):731–736. [PubMed]
  • Sparrow CP, Leffler H, Barondes SH. Multiple soluble beta-galactoside-binding lectins from human lung. J Biol Chem. 1987 May 25;262(15):7383–7390. [PubMed]
  • Kelly WG, Dahmus ME, Hart GW. RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc. J Biol Chem. 1993 May 15;268(14):10416–10424. [PubMed]
  • Reeves R, Chang D, Chung SC. Carbohydrate modifications of the high mobility group proteins. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6704–6708. [PMC free article] [PubMed]
  • Soulard M, Barque JP, Della Valle V, Hernandez-Verdun D, Masson C, Danon F, Larsen CJ. A novel 43-kDa glycoprotein is detected in the nucleus of mammalian cells by autoantibodies from dogs with autoimmune disorders. Exp Cell Res. 1991 Mar;193(1):59–71. [PubMed]
  • Lamm GM, Lamond AI. Non-snRNP protein splicing factors. Biochim Biophys Acta. 1993 Jun 25;1173(3):247–265. [PubMed]
  • Oldenburg KR, Loganathan D, Goldstein IJ, Schultz PG, Gallop MA. Peptide ligands for a sugar-binding protein isolated from a random peptide library. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5393–5397. [PMC free article] [PubMed]
  • Scott JK, Loganathan D, Easley RB, Gong X, Goldstein IJ. A family of concanavalin A-binding peptides from a hexapeptide epitope library. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5398–5402. [PMC free article] [PubMed]
  • Sève AP, Felin M, Doyennette-Moyne MA, Sahraoui T, Aubery M, Hubert J. Evidence for a lactose-mediated association between two nuclear carbohydrate-binding proteins. Glycobiology. 1993 Feb;3(1):23–30. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...