• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Mar 28, 1995; 92(7): 2994–2998.
PMCID: PMC42345

Heat shock protein synthesis and thermotolerance in Cataglyphis, an ant from the Sahara desert.

Abstract

The ant Cataglyphis lives in the Sahara desert and is one of the most thermotolerant land animals known. It forages at body temperatures above 50 degrees C, and the critical thermal maxima are at 53.6 +/- 0.8 degrees C for Cataglyphis bombycina and 55.1 +/- 1.1 degrees C for Cataglyphis bicolor. The synthesis and accumulation of heat shock proteins (HSPs) were analyzed in Cataglyphis and compared to Formica, an ant living in more moderate climates, and to two Drosophila species. In Cataglyphis, protein synthesis continues at temperatures up to 45 degrees C as compared to 39 degrees C for Formica and Drosophila. The two Drosophila species, Drosophila melanogaster and Drosophila ambigua, differ with respect to their maximal induction of HSP synthesis and accumulation by 3-4 degrees C. In contrast, the two ant species accumulate HSPs prior to their exposure to heat, and in Cataglyphis the temperature of maximal HSP induction by de novo protein synthesis is only 2 degrees C higher than in Formica. These findings are interpreted as preadaption of the ants prior to exposure to high temperatures.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.4M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Pauli D, Arrigo AP, Tissières A. Heat shock response in Drosophila. Experientia. 1992 Jul 15;48(7):623–629. [PubMed]
  • Ingolia TD, Craig EA. Drosophila gene related to the major heat shock-induced gene is transcribed at normal temperatures and not induced by heat shock. Proc Natl Acad Sci U S A. 1982 Jan;79(2):525–529. [PMC free article] [PubMed]
  • Craig EA, Ingolia TD, Manseau LJ. Expression of Drosophila heat-shock cognate genes during heat shock and development. Dev Biol. 1983 Oct;99(2):418–426. [PubMed]
  • Hendrick JP, Hartl FU. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem. 1993;62:349–384. [PubMed]
  • Pelham HR. Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell. 1986 Sep 26;46(7):959–961. [PubMed]
  • Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet. 1988;22:631–677. [PubMed]
  • Ingolia TD, Craig EA. Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2360–2364. [PMC free article] [PubMed]
  • Hightower LE. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell. 1991 Jul 26;66(2):191–197. [PubMed]
  • Hiromi Y, Okamoto H, Gehring WJ, Hotta Y. Germline transformation with Drosophila mutant actin genes induces constitutive expression of heat shock genes. Cell. 1986 Jan 31;44(2):293–301. [PubMed]
  • Ashburner M. Patterns of puffing activity in the salivary gland chromosomes of Drosophila. VI. Induction by ecdysone in salivary glands of D. melanogaster cultured in vitro. Chromosoma. 1972;38(3):255–281. [PubMed]
  • Kurtz S, Rossi J, Petko L, Lindquist S. An ancient developmental induction: heat-shock proteins induced in sporulation and oogenesis. Science. 1986 Mar 7;231(4742):1154–1157. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links