Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. 1995 Mar 28; 92(7): 2785–2789.

Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains.


The regulated expression of neural cell adhesion molecule (NCAM) isoforms in the brain is critical for many neurodevelopmental processes including neurulation, axonal outgrowth, and the establishment of neuronal connectivity. We have investigated the expression of the major adult isoforms of NCAM (NCAM-180, NCAM-140, and NCAM-120) and its embryonic highly polysialylated isoform (PSA-NCAM) in the hippocampal region of postmortem brains from 10 schizophrenic and 11 control individuals. Immunohistochemical analysis with a monoclonal antibody recognizing the PSA-NCAM revealed immunoreactivity primarily in the dentate gyrus and in a subset of cells in the hilus region. We have observed a 20-95% reduction in the number of hilar PSA-NCAM-immunoreactive cells in the great majority of schizophrenic brains. The change in PSA-NCAM immunoreactivity is not obvious in other hippocampal subfields. Western blots of tissues from the hippocampal region (as well as from the frontal cortex) probed with a polyclonal antibody recognizing all NCAM isoforms did not reveal significant changes in the overall expression of NCAM, suggesting that the decrease in PSA-NCAM-immunoreactive cells may be related to post-translational processing of the molecule. The expression of this embryonic form of NCAM has been proposed to be related to synaptic rearrangement and plasticity. Therefore, the decrease in PSA-NCAM immunoreactivity in schizophrenic hippocampi may suggest an altered plasticity of this structure in a large proportion of schizophrenic brains. These findings may bear significance to the "neurodevelopmental hypothesis" of schizophrenia.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.8M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Roberts GW. Schizophrenia: a neuropathological perspective. Br J Psychiatry. 1991 Jan;158:8–17. [PubMed]
  • Bloom FE. Advancing a neurodevelopmental origin for schizophrenia. Arch Gen Psychiatry. 1993 Mar;50(3):224–227. [PubMed]
  • Conrad AJ, Abebe T, Austin R, Forsythe S, Scheibel AB. Hippocampal pyramidal cell disarray in schizophrenia as a bilateral phenomenon. Arch Gen Psychiatry. 1991 May;48(5):413–417. [PubMed]
  • Arnold SE, Hyman BT, Van Hoesen GW, Damasio AR. Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry. 1991 Jul;48(7):625–632. [PubMed]
  • Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL. Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry. 1991 Nov;48(11):996–1001. [PubMed]
  • Akbarian S, Viñuela A, Kim JJ, Potkin SG, Bunney WE, Jr, Jones EG. Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Arch Gen Psychiatry. 1993 Mar;50(3):178–187. [PubMed]
  • Akbarian S, Bunney WE, Jr, Potkin SG, Wigal SB, Hagman JO, Sandman CA, Jones EG. Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch Gen Psychiatry. 1993 Mar;50(3):169–177. [PubMed]
  • Edelman GM, Crossin KL. Cell adhesion molecules: implications for a molecular histology. Annu Rev Biochem. 1991;60:155–190. [PubMed]
  • Cunningham BA, Hemperly JJ, Murray BA, Prediger EA, Brackenbury R, Edelman GM. Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science. 1987 May 15;236(4803):799–806. [PubMed]
  • Eubanks JH, Djabali M, Selleri L, Grandy DK, Civelli O, McElligott DL, Evans GA. Structure and linkage of the D2 dopamine receptor and neural cell adhesion molecule genes on human chromosome 11q23. Genomics. 1992 Dec;14(4):1010–1018. [PubMed]
  • Seki T, Arai Y. Distribution and possible roles of the highly polysialylated neural cell adhesion molecule (NCAM-H) in the developing and adult central nervous system. Neurosci Res. 1993 Sep;17(4):265–290. [PubMed]
  • Bonfanti L, Olive S, Poulain DA, Theodosis DT. Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: an immunohistochemical study. Neuroscience. 1992 Jul;49(2):419–436. [PubMed]
  • Seki T, Arai Y. Highly polysialylated neural cell adhesion molecule (NCAM-H) is expressed by newly generated granule cells in the dentate gyrus of the adult rat. J Neurosci. 1993 Jun;13(6):2351–2358. [PubMed]
  • Miller PD, Chung WW, Lagenaur CF, DeKosky ST. Regional distribution of neural cell adhesion molecule (N-CAM) and L1 in human and rodent hippocampus. J Comp Neurol. 1993 Jan 15;327(3):341–349. [PubMed]
  • Chung WW, Lagenaur CF, Yan YM, Lund JS. Developmental expression of neural cell adhesion molecules in the mouse neocortex and olfactory bulb. J Comp Neurol. 1991 Dec 8;314(2):290–305. [PubMed]
  • Theodosis DT, Rougon G, Poulain DA. Retention of embryonic features by an adult neuronal system capable of plasticity: polysialylated neural cell adhesion molecule in the hypothalamo-neurohypophysial system. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5494–5498. [PMC free article] [PubMed]
  • Fraser SE, Murray BA, Chuong CM, Edelman GM. Alteration of the retinotectal map in Xenopus by antibodies to neural cell adhesion molecules. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4222–4226. [PMC free article] [PubMed]
  • Thanos S, Bonhoeffer F, Rutishauser U. Fiber-fiber interaction and tectal cues influence the development of the chicken retinotectal projection. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1906–1910. [PMC free article] [PubMed]
  • Landmesser L, Dahm L, Tang JC, Rutishauser U. Polysialic acid as a regulator of intramuscular nerve branching during embryonic development. Neuron. 1990 May;4(5):655–667. [PubMed]
  • Tomasiewicz H, Ono K, Yee D, Thompson C, Goridis C, Rutishauser U, Magnuson T. Genetic deletion of a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects in the central nervous system. Neuron. 1993 Dec;11(6):1163–1174. [PubMed]
  • Cremer H, Lange R, Christoph A, Plomann M, Vopper G, Roes J, Brown R, Baldwin S, Kraemer P, Scheff S, et al. Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature. 1994 Feb 3;367(6462):455–459. [PubMed]
  • Rougon G, Dubois C, Buckley N, Magnani JL, Zollinger W. A monoclonal antibody against meningococcus group B polysaccharides distinguishes embryonic from adult N-CAM. J Cell Biol. 1986 Dec;103(6 Pt 1):2429–2437. [PMC free article] [PubMed]
  • Dodd J, Morton SB, Karagogeos D, Yamamoto M, Jessell TM. Spatial regulation of axonal glycoprotein expression on subsets of embryonic spinal neurons. Neuron. 1988 Apr;1(2):105–116. [PubMed]
  • Amaral DG, Witter MP. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience. 1989;31(3):571–591. [PubMed]
  • Heckers S, Heinsen H, Geiger B, Beckmann H. Hippocampal neuron number in schizophrenia. A stereological study. Arch Gen Psychiatry. 1991 Nov;48(11):1002–1008. [PubMed]
  • Edelman GM, Chuong CM. Embryonic to adult conversion of neural cell adhesion molecules in normal and staggerer mice. Proc Natl Acad Sci U S A. 1982 Nov;79(22):7036–7040. [PMC free article] [PubMed]
  • Sunshine J, Balak K, Rutishauser U, Jacobson M. Changes in neural cell adhesion molecule (NCAM) structure during vertebrate neural development. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5986–5990. [PMC free article] [PubMed]
  • Szele FG, Dowling JJ, Gonzales C, Theveniau M, Rougon G, Chesselet MF. Pattern of expression of highly polysialylated neural cell adhesion molecule in the developing and adult rat striatum. Neuroscience. 1994 May;60(1):133–144. [PubMed]
  • Le Gal La Salle G, Rougon G, Valin A. The embryonic form of neural cell surface molecule (E-NCAM) in the rat hippocampus and its reexpression on glial cells following kainic acid-induced status epilepticus. J Neurosci. 1992 Mar;12(3):872–882. [PubMed]
  • Miller PD, Styren SD, Lagenaur CF, DeKosky ST. Embryonic neural cell adhesion molecule (N-CAM) is elevated in the denervated rat dentate gyrus. J Neurosci. 1994 Jul;14(7):4217–4225. [PubMed]
  • Doyle E, Nolan PM, Bell R, Regan CM. Hippocampal NCAM180 transiently increases sialylation during the acquisition and consolidation of a passive avoidance response in the adult rat. J Neurosci Res. 1992 Mar;31(3):513–523. [PubMed]
  • Venables PH. Hippocampal function and schizophrenia. Experimental psychological evidence. Ann N Y Acad Sci. 1992 Jul 1;658:111–127. [PubMed]
  • Scheibel AB, Conrad AS. Hippocampal dysgenesis in mutant mouse and schizophrenic man: is there a relationship? Schizophr Bull. 1993;19(1):21–33. [PubMed]
  • Browning MD, Dudek EM, Rapier JL, Leonard S, Freedman R. Significant reductions in synapsin but not synaptophysin specific activity in the brains of some schizophrenics. Biol Psychiatry. 1993 Oct 15;34(8):529–535. [PubMed]
  • Arnold SE, Lee VM, Gur RE, Trojanowski JQ. Abnormal expression of two microtubule-associated proteins (MAP2 and MAP5) in specific subfields of the hippocampal formation in schizophrenia. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10850–10854. [PMC free article] [PubMed]
  • Weinberger DR, Berman KF, Suddath R, Torrey EF. Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am J Psychiatry. 1992 Jul;149(7):890–897. [PubMed]
  • Weinberger DR. A connectionist approach to the prefrontal cortex. J Neuropsychiatry Clin Neurosci. 1993 Summer;5(3):241–253. [PubMed]
  • Lipska BK, Jaskiw GE, Weinberger DR. Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology. 1993 Aug;9(1):67–75. [PubMed]
  • Berger TW, Semple-Rowland S, Basset JL. Hippocampal polymorph neurons are the cells of origin for ipsilateral association and commissural afferents to the dentate gyrus. Brain Res. 1981 Jun 29;215(1-2):329–336. [PubMed]
  • Saykin AJ, Shtasel DL, Gur RE, Kester DB, Mozley LH, Stafiniak P, Gur RC. Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Arch Gen Psychiatry. 1994 Feb;51(2):124–131. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...