Logo of iaiPermissionsJournals.ASM.orgJournalIAI ArticleJournal InfoAuthorsReviewers
Infect Immun. 1977 Nov; 18(2): 514–523.
PMCID: PMC421262

Influence of Salivary Components and Extracellular Polysaccharide Synthesis from Sucrose on the Attachment of Streptococcus mutans 6715 to Hydroxyapatite Surfaces


The adsorption of 3H-labeled Streptococcus mutans 6715 cells to disks of hydroxyapatite (HA) was studied. The number of streptococci that adsorbed was logarithmically related to the concentration of cells available up to at least 2 × 108 per ml; equilibrium occurred within 45 min. Assay reliability was verified by direct scanning electron microscopic counts. Untreated HA disks exposed to buffered saline (PBS)-suspended streptococci at a concentration of 1.1 × 108 per ml absorbed 3.2 × 106 cells per cm2; approximately 3% of the surface area was, therefore, occupied by adsorbed organisms. The presence of adsorbed salivary components on HA reduced the number of attaching S. mutans cells by half. When S. mutans cells were suspended in saliva to mimic conditions existing in the mouth, the number of streptococci adsorbing to saliva-treated HA was reduced more than 30-fold compared to untreated HA. Approximately one-half of the streptococci adsorbed to untreated or to saliva-treated HA disks could be desorbed over a 4-h period with 0.067 M phosphate buffer. S. mutans cells exposed to sucrose to permit extracellular polysaccharide synthesis before or during adsorption attached in fewer numbers to both saliva-treated and untreated HA than PBS-treated organisms. When S. mutans cells adsorbed on untreated HA were exposed to sucrose, fewer organisms could be desorbed; thus, in situ polysaccharide synthesis promoted their more firm attachment to untreated HA. However, when saliva-suspended streptococci were adsorbed to saliva-treated HA surfaces, exposure to sucrose before or subsequent to adsorption did not promote more firm attachment. Evidently, the powerful adherence-inhibiting and desorptive effects of salivary components overshadowed any promoting effects attributable to glucan synthesis from sucrose. Similarly, no differences were noted in the desorption of S. mutans cells from human teeth after exposure to sucrose, glucose, or PBS relative to a strain of Streptococcus mitis (S. mitior). Thus, no evidence was obtained to support the hypothesis that glucan synthesis from sucrose was essential for, or promoted, the attachment of S. mutans cells to HA surfaces exposed to saliva or to the smooth surfaces of human teeth.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bratthall D. Demonstration of five serological groups of streptococcal strains resembling Streptococcus mutans. Odontol Revy. 1970;21(2):143–152. [PubMed]
  • Bratthall D, Gibbons RJ. Changing agglutination activities of salivary immunoglobulin A preparations against oral streptococci. Infect Immun. 1975 Mar;11(3):603–606. [PMC free article] [PubMed]
  • De Stoppelaar JD, Van Houte J, Backer DIRKS O. The effect of carbohydrate restriction on the presence of Streptococcus mutans, Streptococcus sanguis and iodophilic polysaccharide-producing bacteria in human dental plaque. Caries Res. 1970;4(2):114–123. [PubMed]
  • Ericson T. Salivary glycoproteins. Composition and adsorption to hydroxylapatite in relation to the formation of dental pellicles and calculus. Acta Odontol Scand. 1968 May;26(1):3–21. [PubMed]
  • Ericson T, Pruitt K, Wedel H. The reaction of salivary substances with bacteria. J Oral Pathol. 1975 Dec;4(6):307–323. [PubMed]
  • Germaine GR, Schachtele CF. Streptococcus mutans dextransucrase: mode of interaction with high-molecular-weight dextran and role in cellular aggregation. Infect Immun. 1976 Feb;13(2):365–372. [PMC free article] [PubMed]
  • Gibbons RJ, Berman KS, Knoettner P, Kapsimalis B. Dental caries and alveolar bone loss in gnotobiotic rats infected with capsule forming streptococci of human origin. Arch Oral Biol. 1966 Jun;11(6):549–560. [PubMed]
  • Gibbons RJ, Depaola PF, Spinell DM, Skobe Z. Interdental localization of Streptococcus mutans as related to dental caries experience. Infect Immun. 1974 Mar;9(3):481–488. [PMC free article] [PubMed]
  • Gibbons RJ, Fitzgerald RJ. Dextran-induced agglutination of Streptococcus mutans, and its potential role in the formation of microbial dental plaques. J Bacteriol. 1969 May;98(2):341–346. [PMC free article] [PubMed]
  • Gibbons RJ, Moreno EC, Spinell DM. Model delineating the effects of a salivary pellicle on the adsorption of Streptococcus miteor onto hydroxyapatite. Infect Immun. 1976 Oct;14(4):1109–1112. [PMC free article] [PubMed]
  • Gibbons RJ, van Houte J. On the formation of dental plaques. J Periodontol. 1973 Jun;44(6):347–360. [PubMed]
  • Gibbons RJ, van Houte J. Dental caries. Annu Rev Med. 1975;26:121–136. [PubMed]
  • Gibbons RJ, Houte JV. Bacterial adherence in oral microbial ecology. Annu Rev Microbiol. 1975;29:19–44. [PubMed]
  • Hay DI, Gibbons RJ, Spinell DM. Characteristics of some high molecular weight constituents with bacterial aggregating activity from whole saliva and dental plaque. Caries Res. 1971;5(2):111–123. [PubMed]
  • Hillman JD, Van Houte J, Gibbons RJ. Sorption of bacteria to human enamel powder. Arch Oral Biol. 1970 Sep;15(9):899–903. [PubMed]
  • Jordan HV, Keyes PH. In vitro methods for the study of plaque formation and carious lesions. Arch Oral Biol. 1966 Aug;11(8):793–802. [PubMed]
  • Krasse B, Edwardsson S, Svensson I, Trell L. Implantation of caries-inducing streptococci in the human oral cavity. Arch Oral Biol. 1967 Feb;12(2):231–236. [PubMed]
  • Liljemark WF, Gibbons RJ. Proportional distribution and relative adherence of Streptococcus miteor (mitis) on various surfaces in the human oral cavity. Infect Immun. 1972 Nov;6(5):852–859. [PMC free article] [PubMed]
  • Liljemark WF, Schauer SV. Studies on the bacterial components which bind Streptococcus sanguis and Streptococcus mutans to hydroxyapatite. Arch Oral Biol. 1975 Sep;20(9):609–615. [PubMed]
  • McCabe RM, Keyes PH, Howell A., Jr An in vitro method for assessing the plaque forming ability of oral bacteria. Arch Oral Biol. 1967 Dec;12(12):1653–1656. [PubMed]
  • McGaughey C, Field BD, Stowell EC. Effects of salivary proteins on the adsorption of cariogenic streptococci by hydroxyapatite. J Dent Res. 1971 Jul-Aug;50(4):917–922. [PubMed]
  • Mukasa H, Slade HD. Mechanism of adherence of Streptococcus mutans to smooth surfaces. I. Roles of insoluble dextran-levan synthetase enzymes and cell wall polysaccharide antigen in plaque formation. Infect Immun. 1973 Oct;8(4):555–562. [PMC free article] [PubMed]
  • Mukasa H, Slade HD. Mechanism of adherence of Streptococcus mutans to smooth surfaces. II. Nature of the binding site and the adsorption of dextran-levan synthetase enzymes on the cell-wall surface of the streptococcus. Infect Immun. 1974 Feb;9(2):419–429. [PMC free article] [PubMed]
  • Olsson J, Krasse B. A method for studying adherence of oral streptococci to solid surfaces. Scand J Dent Res. 1976 Jan;84(1):20–28. [PubMed]
  • Orstavik D, Kraus FW, Henshaw LC. In vitro attachment of streptococci to the tooth surface. Infect Immun. 1974 May;9(5):794–800. [PMC free article] [PubMed]
  • Sönju T, Christensen TB, Kornstad L, Rölla G. Electron microscopy, carbohydrate analyses and biological activities of the proteins adsorbed in two hours to tooth surfaces in vivo. Caries Res. 1974;8(2):113–122. [PubMed]
  • Spinell DM, Gibbons RJ. Influence of culture medium on the glucosyl transferase- and dextran-binding capacity of Streptococcus mutans 6715 cells. Infect Immun. 1974 Dec;10(6):1448–1451. [PMC free article] [PubMed]
  • van Houte J, Burgess RC, Onose H. Oral implantation of human strains of Streptococcus mutans in rats fed sucrose or glucose diets. Arch Oral Biol. 1976;21(9):561–564. [PubMed]
  • van Houte J, Duchin S. Streptococcus mutans in the mouths of children with congenital sucrase deficiency. Arch Oral Biol. 1975 Nov;20(11):771–773. [PubMed]
  • Van Houte J, Gibbons RJ, Pulkkinen AJ. Adherence as an ecological determinant for streptococci in the human mouth. Arch Oral Biol. 1971 Oct;16(10):1131–1141. [PubMed]
  • Van Houte J, Green DB. Relationship between the concentration of bacteria in saliva and the colonization of teeth in humans. Infect Immun. 1974 Apr;9(4):624–630. [PMC free article] [PubMed]
  • Van Houte J, Upeslacis VN, Jordan HV, Skobe Z, Green DB. Role of sucrose in colonization of Streptococcus mutans in conventional Sprague-Dawley rats. J Dent Res. 1976 Mar-Apr;55(2):202–215. [PubMed]
  • Williams RC, Gibbons RJ. Inhibition of bacterial adherence by secretory immunoglobulin A: a mechanism of antigen disposal. Science. 1972 Aug 25;177(4050):697–699. [PubMed]
  • Williams RC, Gibbons RJ. Inhibition of streptococcal attachment to receptors on human buccal epithelial cells by antigenically similar salivary glycoproteins. Infect Immun. 1975 Apr;11(4):711–718. [PMC free article] [PubMed]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem Compound links
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...