• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Jul 3, 1995; 92(14): 6454–6458.
PMCID: PMC41536

Transcriptional activation of human adult alpha-globin genes by hypersensitive site-40 enhancer: function of nuclear factor-binding motifs occupied in erythroid cells.

Abstract

The developmental stage- and erythroid lineage-specific activation of the human embryonic zeta- and fetal/adult alpha-globin genes is controlled by an upstream regulatory element [hypersensitive site (HS)-40] with locus control region properties, a process mediated by multiple nuclear factor-DNA complexes. In vitro DNase I protection experiments of the two G+C-rich, adult alpha-globin promoters have revealed a number of binding sites for nuclear factors that are common to HeLa and K-562 extracts. However, genomic footprinting analysis has demonstrated that only a subset of these sites, clustered between -130 and +1, is occupied in an erythroid tissue-specific manner. The function of these in vivo-occupied motifs of the alpha-globin promoters, as well as those previously mapped in the HS-40 region, is assayed by site-directed mutagenesis and transient expression in embryonic/fetal erythroid K-562 cells. These studies, together with our expression data on the human embryonic zeta-globin promoter, provide a comprehensive view of the functional roles of individual nuclear factor-DNA complexes in the final stages of transcriptional activation of the human alpha-like globin promoters by the HS-40 element.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.4M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Tjian R, Maniatis T. Transcriptional activation: a complex puzzle with few easy pieces. Cell. 1994 Apr 8;77(1):5–8. [PubMed]
  • Karlsson S, Nienhuis AW. Developmental regulation of human globin genes. Annu Rev Biochem. 1985;54:1071–1108. [PubMed]
  • Evans T, Felsenfeld G, Reitman M. Control of globin gene transcription. Annu Rev Cell Biol. 1990;6:95–124. [PubMed]
  • Dillon N, Grosveld F. Transcriptional regulation of multigene loci: multilevel control. Trends Genet. 1993 Apr;9(4):134–137. [PubMed]
  • Deisseroth A, Hendrick D. Human alpha-globin gene expression following chromosomal dependent gene transfer into mouse erythroleukemia cells. Cell. 1978 Sep;15(1):55–63. [PubMed]
  • Baron MH, Maniatis T. Regulated expression of human alpha- and beta-globin genes in transient heterokaryons. Mol Cell Biol. 1991 Mar;11(3):1239–1247. [PMC free article] [PubMed]
  • Orkin SH. Globin gene regulation and switching: circa 1990. Cell. 1990 Nov 16;63(4):665–672. [PubMed]
  • Stamatoyannopoulos G. Human hemoglobin switching. Science. 1991 Apr 19;252(5004):383–383. [PubMed]
  • Engel JD. Developmental regulation of human beta-globin gene transcription: a switch of loyalties? Trends Genet. 1993 Sep;9(9):304–309. [PubMed]
  • Reddy PM, Stamatoyannopoulos G, Papayannopoulou T, Shen CK. Genomic footprinting and sequencing of human beta-globin locus. Tissue specificity and cell line artifact. J Biol Chem. 1994 Mar 18;269(11):8287–8295. [PubMed]
  • Higgs DR, Vickers MA, Wilkie AO, Pretorius IM, Jarman AP, Weatherall DJ. A review of the molecular genetics of the human alpha-globin gene cluster. Blood. 1989 Apr;73(5):1081–1104. [PubMed]
  • Higgs DR, Wood WG, Jarman AP, Sharpe J, Lida J, Pretorius IM, Ayyub H. A major positive regulatory region located far upstream of the human alpha-globin gene locus. Genes Dev. 1990 Sep;4(9):1588–1601. [PubMed]
  • Jarman AP, Wood WG, Sharpe JA, Gourdon G, Ayyub H, Higgs DR. Characterization of the major regulatory element upstream of the human alpha-globin gene cluster. Mol Cell Biol. 1991 Sep;11(9):4679–4689. [PMC free article] [PubMed]
  • Vyas P, Vickers MA, Simmons DL, Ayyub H, Craddock CF, Higgs DR. Cis-acting sequences regulating expression of the human alpha-globin cluster lie within constitutively open chromatin. Cell. 1992 May 29;69(5):781–793. [PubMed]
  • Sharpe JA, Wells DJ, Whitelaw E, Vyas P, Higgs DR, Wood WG. Analysis of the human alpha-globin gene cluster in transgenic mice. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11262–11266. [PMC free article] [PubMed]
  • Sharpe JA, Summerhill RJ, Vyas P, Gourdon G, Higgs DR, Wood WG. Role of upstream DNase I hypersensitive sites in the regulation of human alpha globin gene expression. Blood. 1993 Sep 1;82(5):1666–1671. [PubMed]
  • Pondel MD, George M, Proudfoot NJ. The LCR-like alpha-globin positive regulatory element functions as an enhancer in transiently transfected cells during erythroid differentiation. Nucleic Acids Res. 1992 Jan 25;20(2):237–243. [PMC free article] [PubMed]
  • Ren S, Luo XN, Atweh GF. The major regulatory element upstream of the alpha-globin gene has classical and inducible enhancer activity. Blood. 1993 Feb 15;81(4):1058–1066. [PubMed]
  • Zhang Q, Reddy PM, Yu CY, Bastiani C, Higgs D, Stamatoyannopoulos G, Papayannopoulou T, Shen CK. Transcriptional activation of human zeta 2 globin promoter by the alpha globin regulatory element (HS-40): functional role of specific nuclear factor-DNA complexes. Mol Cell Biol. 1993 Apr;13(4):2298–2308. [PMC free article] [PubMed]
  • Strauss EC, Andrews NC, Higgs DR, Orkin SH. In vivo footprinting of the human alpha-globin locus upstream regulatory element by guanine and adenine ligation-mediated polymerase chain reaction. Mol Cell Biol. 1992 May;12(5):2135–2142. [PMC free article] [PubMed]
  • Yu CY, Chen J, Lin LI, Tam M, Shen CK. Cell type-specific protein-DNA interactions in the human zeta-globin upstream promoter region: displacement of Sp1 by the erythroid cell-specific factor NF-E1. Mol Cell Biol. 1990 Jan;10(1):282–294. [PMC free article] [PubMed]
  • Barnhart KM, Kim CG, Sheffery M. Purification and characterization of an erythroid cell-specific factor that binds the murine alpha- and beta-globin genes. Mol Cell Biol. 1989 Jun;9(6):2606–2614. [PMC free article] [PubMed]
  • Kim CG, Swendeman SL, Barnhart KM, Sheffery M. Promoter elements and erythroid cell nuclear factors that regulate alpha-globin gene transcription in vitro. Mol Cell Biol. 1990 Nov;10(11):5958–5966. [PMC free article] [PubMed]
  • Lim LC, Fang L, Swendeman SL, Sheffery M. Characterization of the molecularly cloned murine alpha-globin transcription factor CP2. J Biol Chem. 1993 Aug 25;268(24):18008–18017. [PubMed]
  • Yost SE, Shewchuk B, Hardison R. Nuclear protein-binding sites in a transcriptional control region of the rabbit alpha-globin gene. Mol Cell Biol. 1993 Sep;13(9):5439–5449. [PMC free article] [PubMed]
  • Maxam AM, Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. [PubMed]
  • Mueller PR, Wold B. In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science. 1989 Nov 10;246(4931):780–786. [PubMed]
  • Pfeifer GP, Steigerwald SD, Mueller PR, Wold B, Riggs AD. Genomic sequencing and methylation analysis by ligation mediated PCR. Science. 1989 Nov 10;246(4931):810–813. [PubMed]
  • Reddy PM, Shen CK. Protein-DNA interactions in vivo of an erythroid-specific, human beta-globin locus enhancer. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8676–8680. [PMC free article] [PubMed]
  • Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. [PMC free article] [PubMed]
  • Selden RF, Howie KB, Rowe ME, Goodman HM, Moore DD. Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol Cell Biol. 1986 Sep;6(9):3173–3179. [PMC free article] [PubMed]
  • Motamed K, Bastiani C, Zhang Q, Bailey A, Shen CK. CACC box and enhancer response of the human embryonic epsilon globin promoter. Gene. 1993 Jan 30;123(2):235–240. [PubMed]
  • Charnay P, Treisman R, Mellon P, Chao M, Axel R, Maniatis T. Differences in human alpha- and beta-globin gene expression in mouse erythroleukemia cells: the role of intragenic sequences. Cell. 1984 Aug;38(1):251–263. [PubMed]
  • Dynan WS, Tjian R. Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins. Nature. 316(6031):774–778. [PubMed]
  • Jones KA, Kadonaga JT, Rosenfeld PJ, Kelly TJ, Tjian R. A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. Cell. 1987 Jan 16;48(1):79–89. [PubMed]
  • Zorbas H, Rein T, Krause A, Hoffmann K, Winnacker EL. Nuclear factor I (NF I) binds to an NF I-type site but not to the CCAAT site in the human alpha-globin gene promoter. J Biol Chem. 1992 Apr 25;267(12):8478–8484. [PubMed]
  • Tsai SF, Martin DI, Zon LI, D'Andrea AD, Wong GG, Orkin SH. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature. 1989 Jun 8;339(6224):446–451. [PubMed]
  • Andrews NC, Erdjument-Bromage H, Davidson MB, Tempst P, Orkin SH. Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature. 1993 Apr 22;362(6422):722–728. [PubMed]
  • Treisman R, Green MR, Maniatis T. cis and trans activation of globin gene transcription in transient assays. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7428–7432. [PMC free article] [PubMed]
  • Whitelaw E, Hogben P, Hanscombe O, Proudfoot NJ. Transcriptional promiscuity of the human alpha-globin gene. Mol Cell Biol. 1989 Jan;9(1):241–251. [PMC free article] [PubMed]
  • Pfeifer GP, Tanguay RL, Steigerwald SD, Riggs AD. In vivo footprint and methylation analysis by PCR-aided genomic sequencing: comparison of active and inactive X chromosomal DNA at the CpG island and promoter of human PGK-1. Genes Dev. 1990 Aug;4(8):1277–1287. [PubMed]
  • Li B, Adams CC, Workman JL. Nucleosome binding by the constitutive transcription factor Sp1. J Biol Chem. 1994 Mar 11;269(10):7756–7763. [PubMed]
  • Mitchell PJ, Wang C, Tjian R. Positive and negative regulation of transcription in vitro: enhancer-binding protein AP-2 is inhibited by SV40 T antigen. Cell. 1987 Sep 11;50(6):847–861. [PubMed]
  • Imagawa M, Chiu R, Karin M. Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell. 1987 Oct 23;51(2):251–260. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...