• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of embojLink to Publisher's site
EMBO J. Dec 15, 1993; 12(13): 5051–5056.
PMCID: PMC413765

MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast.


The related transcription factors ACE1 of Saccharomyces cerevisiae and AMT1 of Candida glabrata are involved in copper metabolism by activating the transcription of copper metallothionein genes. ACE1 and AMT1 are 'copper-fist' transcription factors which possess a conserved cysteine-rich copper binding domain required for DNA binding. Here we report the identification of a nuclear protein from S. cerevisiae, MAC1, whose N-terminal region is highly similar to the copper and DNA binding domains of ACE1 and AMT1. Loss-of-function mutants of MAC1 have a defect in the plasma membrane Cu(II) and Fe(III) reductase activity, are slow growing, respiratory deficient, and hypersensitive to heat and exposure to cadmium, zinc, lead and H2O2. Conversely, a dominant gain-of-function mutant of MAC1 shows an elevated reductase activity and is hypersensitive to copper. We have identified two target genes of MAC1 whose altered expression in mutants of MAC1 can account for some of the observed mutant phenotypes. First, MAC1 is involved in basal level transcription of FRE1, encoding a plasma membrane component associated with both Cu(II) and Fe(III) reduction. Second, MAC1 is involved in the H2O2-induced transcription of CTT1, encoding the cytosolic catalase. This suggests that MAC1 may encode a novel metal-fist transcription factor required for both basal and regulated transcription of genes involved in Cu/Fe utilization and the stress response.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.5M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Buchman C, Skroch P, Welch J, Fogel S, Karin M. The CUP2 gene product, regulator of yeast metallothionein expression, is a copper-activated DNA-binding protein. Mol Cell Biol. 1989 Sep;9(9):4091–4095. [PMC free article] [PubMed]
  • Buchman C, Skroch P, Dixon W, Tullius TD, Karin M. A single amino acid change in CUP2 alters its mode of DNA binding. Mol Cell Biol. 1990 Sep;10(9):4778–4787. [PMC free article] [PubMed]
  • Dancis A, Klausner RD, Hinnebusch AG, Barriocanal JG. Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol. 1990 May;10(5):2294–2301. [PMC free article] [PubMed]
  • Dancis A, Roman DG, Anderson GJ, Hinnebusch AG, Klausner RD. Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3869–3873. [PMC free article] [PubMed]
  • Davies K. Cloning the Menkes disease gene. Nature. 1993 Jan 7;361(6407):98–98. [PubMed]
  • Finley D, Ozkaynak E, Varshavsky A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell. 1987 Mar 27;48(6):1035–1046. [PubMed]
  • Fürst P, Hamer D. Cooperative activation of a eukaryotic transcription factor: interaction between Cu(I) and yeast ACE1 protein. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5267–5271. [PMC free article] [PubMed]
  • Fürst P, Hu S, Hackett R, Hamer D. Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. Cell. 1988 Nov 18;55(4):705–717. [PubMed]
  • Hamer DH. Metallothionein. Annu Rev Biochem. 1986;55:913–951. [PubMed]
  • Holmquist B. Elimination of adventitious metals. Methods Enzymol. 1988;158:6–12. [PubMed]
  • Hu S, Fürst P, Hamer D. The DNA and Cu binding functions of ACE1 are interdigitated within a single domain. New Biol. 1990 Jun;2(6):544–555. [PubMed]
  • Huibregtse JM, Engelke DR, Thiele DJ. Copper-induced binding of cellular factors to yeast metallothionein upstream activation sequences. Proc Natl Acad Sci U S A. 1989 Jan;86(1):65–69. [PMC free article] [PubMed]
  • Jungmann J, Reins HA, Schobert C, Jentsch S. Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature. 1993 Jan 28;361(6410):369–371. [PubMed]
  • Klausner RD, Rouault TA, Harford JB. Regulating the fate of mRNA: the control of cellular iron metabolism. Cell. 1993 Jan 15;72(1):19–28. [PubMed]
  • Lesuisse E, Labbe P. Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae. J Gen Microbiol. 1989 Feb;135(2):257–263. [PubMed]
  • Lin CM, Kosman DJ. Copper uptake in wild type and copper metallothionein-deficient Saccharomyces cerevisiae. Kinetics and mechanism. J Biol Chem. 1990 Jun 5;265(16):9194–9200. [PubMed]
  • Marchler G, Schüller C, Adam G, Ruis H. A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J. 1993 May;12(5):1997–2003. [PMC free article] [PubMed]
  • Myers AM, Tzagoloff A, Kinney DM, Lusty CJ. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene. 1986;45(3):299–310. [PubMed]
  • Spevak W, Fessl F, Rytka J, Traczyk A, Skoneczny M, Ruis H. Isolation of the catalase T structural gene of Saccharomyces cerevisiae by functional complementation. Mol Cell Biol. 1983 Sep;3(9):1545–1551. [PMC free article] [PubMed]
  • Szczypka MS, Thiele DJ. A cysteine-rich nuclear protein activates yeast metallothionein gene transcription. Mol Cell Biol. 1989 Feb;9(2):421–429. [PMC free article] [PubMed]
  • Thiele DJ. ACE1 regulates expression of the Saccharomyces cerevisiae metallothionein gene. Mol Cell Biol. 1988 Jul;8(7):2745–2752. [PMC free article] [PubMed]
  • Welch J, Fogel S, Buchman C, Karin M. The CUP2 gene product regulates the expression of the CUP1 gene, coding for yeast metallothionein. EMBO J. 1989 Jan;8(1):255–260. [PMC free article] [PubMed]
  • Zhou PB, Thiele DJ. Isolation of a metal-activated transcription factor gene from Candida glabrata by complementation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6112–6116. [PMC free article] [PubMed]
  • Zhou P, Szczypka MS, Sosinowski T, Thiele DJ. Expression of a yeast metallothionein gene family is activated by a single metalloregulatory transcription factor. Mol Cell Biol. 1992 Sep;12(9):3766–3775. [PMC free article] [PubMed]

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...