• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of embojLink to Publisher's site
EMBO J. Mar 1993; 12(3): 1141–1151.
PMCID: PMC413315

DNA methylation in the Alu sequences of diploid and haploid primary human cells.


We have investigated DNA methylation in human Alu sequences, both in general and in specific Alu sequences associated with the genes for alpha 1 globin, tissue plasminogen activator (tPA), adrenocorticotropic hormone (ACTH) and angiogenin. We studied DNAs from lymphocytes, granulocytes, brain, heart muscle and sperm, and from the human HeLa and KB cell lines by using cleavage with methylation-sensitive restriction enzymes combined with Southern blot hybridization and by using genomic sequencing. The results can be summarized as follows. (i) In differentiated primary human cells, Alu elements are often highly methylated even when they are in very 5'-CG-3'-rich regions. This finding is not consistent with the notion that hypermethylation would be a sufficient condition in itself for 5'-CG-3' sequences to undergo loss of 5-methyl-deoxycytidine (5-mC) due to deamination and subsequent mutation. (ii) There are distinct differences in the levels of methylation in the specific Alu sequences. (iii) Alu elements in the DNA of haploid spermatozoa are much less methylated than in diploid cells. Preliminary data indicate that spermatozoa contain Alu-specific RNAs. (iv) The results of cell-free transcription experiments with Alu elements suggest that the in vitro transcription of Alu elements can be inhibited by 5'-CG-3' methylation. High levels of 5'-CG-3' methylation in Alu elements could contribute to their general transcriptional inactivity. (v) The patterns of methylation observed in the Alu elements and in the surrounding sequences are characterized by cell type specific interindividual concordance.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.6M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bains W. The multiple origins of human Alu sequences. J Mol Evol. 1986;23(3):189–199. [PubMed]
  • Batzer MA, Deininger PL. A human-specific subfamily of Alu sequences. Genomics. 1991 Mar;9(3):481–487. [PubMed]
  • Blin N, Stafford DW. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 1976 Sep;3(9):2303–2308. [PMC free article] [PubMed]
  • Chandler LA, Ghazi H, Jones PA, Boukamp P, Fusenig NE. Allele-specific methylation of the human c-Ha-ras-1 gene. Cell. 1987 Aug 28;50(5):711–717. [PubMed]
  • Church GM, Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. [PMC free article] [PubMed]
  • Deininger PL, Slagel VK. Recently amplified Alu family members share a common parental Alu sequence. Mol Cell Biol. 1988 Oct;8(10):4566–4569. [PMC free article] [PubMed]
  • Deininger PL, Jolly DJ, Rubin CM, Friedmann T, Schmid CW. Base sequence studies of 300 nucleotide renatured repeated human DNA clones. J Mol Biol. 1981 Sep 5;151(1):17–33. [PubMed]
  • Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. [PMC free article] [PubMed]
  • Dobrzanski P, Hoeveler A, Doerfler W. Inactivation by sequence-specific methylations of adenovirus promoters in a cell-free transcription system. J Virol. 1988 Nov;62(11):3941–3946. [PMC free article] [PubMed]
  • Doerfler W. DNA methylation and gene activity. Annu Rev Biochem. 1983;52:93–124. [PubMed]
  • Feinberg AP, Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. [PubMed]
  • Degen SJ, Rajput B, Reich E. The human tissue plasminogen activator gene. J Biol Chem. 1986 May 25;261(15):6972–6985. [PubMed]
  • Gillis S, Watson J. Interleukin-2 dependent culture of cytolytic T cell lines. Immunol Rev. 1981;54:81–109. [PubMed]
  • Jurka J, Milosavljevic A. Reconstruction and analysis of human Alu genes. J Mol Evol. 1991 Feb;32(2):105–121. [PubMed]
  • Jüttermann R, Hosokawa K, Kochanek S, Doerfler W. Adenovirus type 2 VAI RNA transcription by polymerase III is blocked by sequence-specific methylation. J Virol. 1991 Apr;65(4):1735–1742. [PMC free article] [PubMed]
  • Klenow H, Overgaard-Hansen K, Patkar SA. Proteolytic cleavage fo native DNA polymerase into two different catalytic fragments. Influence of assay condtions on the change of exonuclease activity and polymerase activity accompanying cleavage. Eur J Biochem. 1971 Oct 14;22(3):371–381. [PubMed]
  • Kochanek S, Toth M, Dehmel A, Renz D, Doerfler W. Interindividual concordance of methylation profiles in human genes for tumor necrosis factors alpha and beta. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8830–8834. [PMC free article] [PubMed]
  • Kochanek S, Radbruch A, Tesch H, Renz D, Doerfler W. DNA methylation profiles in the human genes for tumor necrosis factors alpha and beta in subpopulations of leukocytes and in leukemias. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5759–5763. [PMC free article] [PubMed]
  • Korenberg JR, Rykowski MC. Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell. 1988 May 6;53(3):391–400. [PubMed]
  • Kurachi K, Davie EW, Strydom DJ, Riordan JF, Vallee BL. Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor. Biochemistry. 1985 Sep 24;24(20):5494–5499. [PubMed]
  • Langner KD, Weyer U, Doerfler W. Trans effect of the E1 region of adenoviruses on the expression of a prokaryotic gene in mammalian cells: resistance to 5' -CCGG- 3' methylation. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1598–1602. [PMC free article] [PubMed]
  • LEHMAN IR, BESSMAN MJ, SIMMS ES, KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J Biol Chem. 1958 Jul;233(1):163–170. [PubMed]
  • Ludwig M, Wohn KD, Schleuning WD, Olek K. Allelic dimorphism in the human tissue-type plasminogen activator (TPA) gene as a result of an Alu insertion/deletion event. Hum Genet. 1992 Feb;88(4):388–392. [PubMed]
  • Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. [PMC free article] [PubMed]
  • Perez-Stable C, Shen CK. Competitive and cooperative functioning of the anterior and posterior promoter elements of an Alu family repeat. Mol Cell Biol. 1986 Jun;6(6):2041–2052. [PMC free article] [PubMed]
  • Perez-Stable C, Ayres TM, Shen CK. Distinctive sequence organization and functional programming of an Alu repeat promoter. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5291–5295. [PMC free article] [PubMed]
  • Renbaum P, Abrahamove D, Fainsod A, Wilson GG, Rottem S, Razin A. Cloning, characterization, and expression in Escherichia coli of the gene coding for the CpG DNA methylase from Spiroplasma sp. strain MQ1(M.SssI). Nucleic Acids Res. 1990 Mar 11;18(5):1145–1152. [PMC free article] [PubMed]
  • Rogers J. Retroposons defined. Nature. 1983 Feb 10;301(5900):460–460. [PubMed]
  • Schmid CW. Human Alu subfamilies and their methylation revealed by blot hybridization. Nucleic Acids Res. 1991 Oct 25;19(20):5613–5617. [PMC free article] [PubMed]
  • Schmid CW, Jelinek WR. The Alu family of dispersed repetitive sequences. Science. 1982 Jun 4;216(4550):1065–1070. [PubMed]
  • Silva AJ, White R. Inheritance of allelic blueprints for methylation patterns. Cell. 1988 Jul 15;54(2):145–152. [PubMed]
  • Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. [PubMed]
  • Sutter D, Westphal M, Doerfler W. Patterns of integration of viral DNA sequences in the genomes of adenovirus type 12-transformed hamster cells. Cell. 1978 Jul;14(3):569–585. [PubMed]
  • Takahashi H, Hakamata Y, Watanabe Y, Kikuno R, Miyata T, Numa S. Complete nucleotide sequence of the human corticotropin-beta-lipotropin precursor gene. Nucleic Acids Res. 1983 Oct 11;11(19):6847–6858. [PMC free article] [PubMed]
  • Toth M, Lichtenberg U, Doerfler W. Genomic sequencing reveals a 5-methylcytosine-free domain in active promoters and the spreading of preimposed methylation patterns. Proc Natl Acad Sci U S A. 1989 May;86(10):3728–3732. [PMC free article] [PubMed]
  • Ullu E, Murphy S, Melli M. Human 7SL RNA consists of a 140 nucleotide middle-repetitive sequence inserted in an alu sequence. Cell. 1982 May;29(1):195–202. [PubMed]
  • Weiner AM, Deininger PL, Efstratiadis A. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem. 1986;55:631–661. [PubMed]
  • Willard C, Nguyen HT, Schmid CW. Existence of at least three distinct Alu subfamilies. J Mol Evol. 1987;26(3):180–186. [PubMed]

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem Compound links
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...