Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. 1995 Nov 7; 92(23): 10467–10471.
PMCID: PMC40632

Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation.

Abstract

The adenovirus type 2/5 E1A proteins transform primary baby rat kidney (BRK) cells in cooperation with the activated Ras (T24 ras) oncoprotein. The N-terminal half of E1A (exon 1) is essential for this transformation activity. While the C-terminal half of E1A (exon 2) is dispensable, a region located between residues 225 and 238 of the 243R E1A protein negatively modulates in vitro T24 ras cooperative transformation as well as the tumorigenic potential of E1A/T24 ras-transformed cells. The same C-terminal domain is also required for binding of a cellular 48-kDa phosphoprotein, C-terminal binding protein (CtBP). We have cloned the cDNA for CtBP via yeast two-hybrid interaction cloning. The cDNA encodes a 439-amino acid (48 kDa) protein that specifically interacts with exon 2 in yeast two-hybrid, in vitro protein binding, and in vivo coimmunoprecipitation analyses. This protein requires residues 225-238 of the 243R E1A protein for interaction. The predicted protein sequence of the isolated cDNA is identical to amino acid sequences obtained from peptides prepared from biochemically purified CtBP. Fine mapping of the CtBP-binding domain revealed that a 6-amino acid motif highly conserved among the E1A proteins of various human and animal adenoviruses is required for this interaction. These results suggest that interaction of CtBP with the E1A proteins may play a critical role in adenovirus replication and oncogenic transformation.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.4M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Zerler B, Moran B, Maruyama K, Moomaw J, Grodzicker T, Ruley HE. Adenovirus E1A coding sequences that enable ras and pmt oncogenes to transform cultured primary cells. Mol Cell Biol. 1986 Mar;6(3):887–899. [PMC free article] [PubMed]
  • Dyson N, Harlow E. Adenovirus E1A targets key regulators of cell proliferation. Cancer Surv. 1992;12:161–195. [PubMed]
  • Nevins JR. E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science. 1992 Oct 16;258(5081):424–429. [PubMed]
  • Moran E. DNA tumor virus transforming proteins and the cell cycle. Curr Opin Genet Dev. 1993 Feb;3(1):63–70. [PubMed]
  • Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence JB, Livingston DM. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 1994 Apr 15;8(8):869–884. [PubMed]
  • Arany Z, Newsome D, Oldread E, Livingston DM, Eckner R. A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature. 1995 Mar 2;374(6517):81–84. [PubMed]
  • Lundblad JR, Kwok RP, Laurance ME, Harter ML, Goodman RH. Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP. Nature. 1995 Mar 2;374(6517):85–88. [PubMed]
  • Linder S, Popowicz P, Svensson C, Marshall H, Bondesson M, Akusjärvi G. Enhanced invasive properties of rat embryo fibroblasts transformed by adenovirus E1A mutants with deletions in the carboxy-terminal exon. Oncogene. 1992 Mar;7(3):439–443. [PubMed]
  • Bondesson M, Svensson C, Linder S, Akusjärvi G. The carboxy-terminal exon of the adenovirus E1A protein is required for E4F-dependent transcription activation. EMBO J. 1992 Sep;11(9):3347–3354. [PMC free article] [PubMed]
  • Mymryk JS, Bayley ST. Induction of gene expression by exon 2 of the major E1A proteins of adenovirus type 5. J Virol. 1993 Dec;67(12):6922–6928. [PMC free article] [PubMed]
  • Subramanian T, La Regina M, Chinnadurai G. Enhanced ras oncogene mediated cell transformation and tumorigenesis by adenovirus 2 mutants lacking the C-terminal region of E1a protein. Oncogene. 1989 Apr;4(4):415–420. [PubMed]
  • Quinlan MP, Douglas JL. Immortalization of primary epithelial cells requires first- and second-exon functions of adenovirus type 5 12S. J Virol. 1992 Apr;66(4):2020–2030. [PMC free article] [PubMed]
  • Urbanelli D, Sawada Y, Raskova J, Jones NC, Shenk T, Raska K., Jr C-terminal domain of the adenovirus E1A oncogene product is required for induction of cytotoxic T lymphocytes and tumor-specific transplantation immunity. Virology. 1989 Dec;173(2):607–614. [PubMed]
  • Douglas JL, Gopalakrishnan S, Quinlan MP. Modulation of transformation of primary epithelial cells by the second exon of the Ad5 E1A12S gene. Oncogene. 1991 Nov;6(11):2093–2103. [PubMed]
  • Pozzatti R, Muschel R, Williams J, Padmanabhan R, Howard B, Liotta L, Khoury G. Primary rat embryo cells transformed by one or two oncogenes show different metastatic potentials. Science. 1986 Apr 11;232(4747):223–227. [PubMed]
  • Pozzatti R, McCormick M, Thompson MA, Khoury G. The E1a gene of adenovirus type 2 reduces the metastatic potential of ras-transformed rat embryo cells. Mol Cell Biol. 1988 Jul;8(7):2984–2988. [PMC free article] [PubMed]
  • Steeg PS, Bevilacqua G, Pozzatti R, Liotta LA, Sobel ME. Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res. 1988 Nov 15;48(22):6550–6554. [PubMed]
  • Boyd JM, Subramanian T, Schaeper U, La Regina M, Bayley S, Chinnadurai G. A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J. 1993 Feb;12(2):469–478. [PMC free article] [PubMed]
  • Ma J, Ptashne M. A new class of yeast transcriptional activators. Cell. 1987 Oct 9;51(1):113–119. [PubMed]
  • Durfee T, Becherer K, Chen PL, Yeh SH, Yang Y, Kilburn AE, Lee WH, Elledge SJ. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 1993 Apr;7(4):555–569. [PubMed]
  • Moss B, Elroy-Stein O, Mizukami T, Alexander WA, Fuerst TR. Product review. New mammalian expression vectors. Nature. 1990 Nov 1;348(6296):91–92. [PubMed]
  • Chien CT, Bartel PL, Sternglanz R, Fields S. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9578–9582. [PMC free article] [PubMed]
  • Gill G, Ptashne M. Mutants of GAL4 protein altered in an activation function. Cell. 1987 Oct 9;51(1):121–126. [PubMed]
  • Fuerst TR, Niles EG, Studier FW, Moss B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122–8126. [PMC free article] [PubMed]
  • Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989 Jul 20;340(6230):245–246. [PubMed]
  • Harlow E, Franza BR, Jr, Schley C. Monoclonal antibodies specific for adenovirus early region 1A proteins: extensive heterogeneity in early region 1A products. J Virol. 1985 Sep;55(3):533–546. [PMC free article] [PubMed]
  • van Ormondt H, Maat J, Dijkema R. Comparison of nucleotide sequences of the early E1a regions for subgroups A, B and C of human adenoviruses. Gene. 1980 Dec;12(1-2):63–76. [PubMed]
  • Arthur M, Molinas C, Dutka-Malen S, Courvalin P. Structural relationship between the vancomycin resistance protein VanH and 2-hydroxycarboxylic acid dehydrogenases. Gene. 1991 Jul 15;103(1):133–134. [PubMed]
  • Taguchi H, Ohta T. Histidine 296 is essential for the catalysis in Lactobacillus plantarum D-lactate dehydrogenase. J Biol Chem. 1993 Aug 25;268(24):18030–18034. [PubMed]
  • Taguchi H, Ohta T. D-lactate dehydrogenase is a member of the D-isomer-specific 2-hydroxyacid dehydrogenase family. Cloning, sequencing, and expression in Escherichia coli of the D-lactate dehydrogenase gene of Lactobacillus plantarum. J Biol Chem. 1991 Jul 5;266(19):12588–12594. [PubMed]
  • Yomano LP, Scopes RK, Ingram LO. Cloning, sequencing, and expression of the Zymomonas mobilis phosphoglycerate mutase gene (pgm) in Escherichia coli. J Bacteriol. 1993 Jul;175(13):3926–3933. [PMC free article] [PubMed]
  • Arps PJ, Fulton GF, Minnich EC, Lidstrom ME. Genetics of serine pathway enzymes in Methylobacterium extorquens AM1: phosphoenolpyruvate carboxylase and malyl coenzyme A lyase. J Bacteriol. 1993 Jun;175(12):3776–3783. [PMC free article] [PubMed]
  • Goldberg JD, Yoshida T, Brick P. Crystal structure of a NAD-dependent D-glycerate dehydrogenase at 2.4 A resolution. J Mol Biol. 1994 Mar 4;236(4):1123–1140. [PubMed]
  • Chistoserdova LV, Lidstrom ME. Genetics of the serine cycle in Methylobacterium extorquens AM1: identification of sgaA and mtdA and sequences of sgaA, hprA, and mtdA. J Bacteriol. 1994 Apr;176(7):1957–1968. [PMC free article] [PubMed]
  • Greenler JM, Sloan JS, Schwartz BW, Becker WM. Isolation, characterization and sequence analysis of a full-length cDNA clone encoding NADH-dependent hydroxypyruvate reductase from cucumber. Plant Mol Biol. 1989 Aug;13(2):139–150. [PubMed]
  • Colas des Francs-Small C, Ambard-Bretteville F, Small ID, Rémy R. Identification of a major soluble protein in mitochondria from nonphotosynthetic tissues as NAD-dependent formate dehydrogenase. Plant Physiol. 1993 Aug;102(4):1171–1177. [PMC free article] [PubMed]
  • Chow CM, RajBhandary UL. Developmental regulation of the gene for formate dehydrogenase in Neurospora crassa. J Bacteriol. 1993 Jun;175(12):3703–3709. [PMC free article] [PubMed]
  • Baggetto LG. Deviant energetic metabolism of glycolytic cancer cells. Biochimie. 1992 Nov;74(11):959–974. [PubMed]
  • Meyer-Siegler K, Mauro DJ, Seal G, Wurzer J, deRiel JK, Sirover MA. A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8460–8464. [PMC free article] [PubMed]
  • Williams KR, Reddigari S, Patel GL. Identification of a nucleic acid helix-destabilizing protein from rat liver as lactate dehydrogenase-5. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5260–5264. [PMC free article] [PubMed]
  • Singh R, Green MR. Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science. 1993 Jan 15;259(5093):365–368. [PubMed]
  • Elzinga SD, Bednarz AL, van Oosterum K, Dekker PJ, Grivell LA. Yeast mitochondrial NAD(+)-dependent isocitrate dehydrogenase is an RNA-binding protein. Nucleic Acids Res. 1993 Nov 25;21(23):5328–5331. [PMC free article] [PubMed]
  • Kawamoto RM, Caswell AH. Autophosphorylation of glyceraldehydephosphate dehydrogenase and phosphorylation of protein from skeletal muscle microsomes. Biochemistry. 1986 Feb 11;25(3):657–661. [PubMed]
  • Ko JL, Dalie BL, Goldman E, Harter ML. Adenovirus-2 early region IA protein synthesized in Escherichia coli extracts indirectly associates with DNA. EMBO J. 1986 Jul;5(7):1645–1651. [PMC free article] [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    NCBI Bookshelf books that cite the current articles.
  • Gene
    Gene
    Gene records that cite the current articles. Citations in Gene are added manually by NCBI or imported from outside public resources.
  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence and PMC links.
  • GEO Profiles
    GEO Profiles
    Gene Expression Omnibus (GEO) Profiles of molecular abundance data. The current articles are references on the Gene record associated with the GEO profile.
  • HomoloGene
    HomoloGene
    HomoloGene clusters of homologous genes and sequences that cite the current articles. These are references on the Gene and sequence records in the HomoloGene entry.
  • MedGen
    MedGen
    Related information in MedGen
  • Nucleotide
    Nucleotide
    Primary database (GenBank) nucleotide records reported in the current articles as well as Reference Sequences (RefSeqs) that include the articles as references.
  • OMIM
    OMIM
    Genome Survey Sequence (GSS) nucleotide records reported in the current articles.
  • Pathways + GO
    Pathways + GO
    Pathways and biological systems (BioSystems) that cite the current articles. Citations are from the BioSystems source databases (KEGG and BioCyc).
  • Protein
    Protein
    Protein translation features of primary database (GenBank) nucleotide records reported in the current articles as well as Reference Sequences (RefSeqs) that include the articles as references.
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...