• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Dec 5, 1995; 92(25): 11916–11920.
PMCID: PMC40514

GAIP, a protein that specifically interacts with the trimeric G protein G alpha i3, is a member of a protein family with a highly conserved core domain.

Abstract

Using the yeast two-hybrid system we have identified a human protein, GAIP (G Alpha Interacting Protein), that specifically interacts with the heterotrimeric GTP-binding protein G alpha i3. Interaction was verified by specific binding of in vitro-translated G alpha i3 with a GAIP-glutathione S-transferase fusion protein. GAIP is a small protein (217 amino acids, 24 kDa) that contains two potential phosphorylation sites for protein kinase C and seven for casein kinase 2. GAIP shows high homology to two previously identified human proteins, GOS8 and 1R20, two Caenorhabditis elegans proteins, CO5B5.7 and C29H12.3, and the FLBA gene product in Aspergillus nidulans--all of unknown function. Significant homology was also found to the SST2 gene product in Saccharomyces cerevisiae that is known to interact with a yeast G alpha subunit (Gpa1). A highly conserved core domain of 125 amino acids characterizes this family of proteins. Analysis of deletion mutants demonstrated that the core domain is the site of GAIP's interaction with G alpha i3. GAIP is likely to be an early inducible phosphoprotein, as its cDNA contains the TTTTGT sequence characteristic of early response genes in its 3'-untranslated region. By Northern analysis GAIP's 1.6-kb mRNA is most abundant in lung, heart, placenta, and liver and is very low in brain, skeletal muscle, pancreas, and kidney. GAIP appears to interact exclusively with G alpha i3, as it did not interact with G alpha i2 and G alpha q. The fact that GAIP and Sst2 interact with G alpha subunits and share a common domain suggests that other members of the GAIP family also interact with G alpha subunits through the 125-amino-acid core domain.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Stryer L, Bourne HR. G proteins: a family of signal transducers. Annu Rev Cell Biol. 1986;2:391–419. [PubMed]
  • Gilman AG. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. [PubMed]
  • Kaziro Y, Itoh H, Kozasa T, Nakafuku M, Satoh T. Structure and function of signal-transducing GTP-binding proteins. Annu Rev Biochem. 1991;60:349–400. [PubMed]
  • Melançon P, Glick BS, Malhotra V, Weidman PJ, Serafini T, Gleason ML, Orci L, Rothman JE. Involvement of GTP-binding "G" proteins in transport through the Golgi stack. Cell. 1987 Dec 24;51(6):1053–1062. [PubMed]
  • Donaldson JG, Kahn RA, Lippincott-Schwartz J, Klausner RD. Binding of ARF and beta-COP to Golgi membranes: possible regulation by a trimeric G protein. Science. 1991 Nov 22;254(5035):1197–1199. [PubMed]
  • Kahn RA. Fluoride is not an activator of the smaller (20-25 kDa) GTP-binding proteins. J Biol Chem. 1991 Aug 25;266(24):15595–15597. [PubMed]
  • Toutant M, Aunis D, Bockaert J, Homburger V, Rouot B. Presence of three pertussis toxin substrates and Go alpha immunoreactivity in both plasma and granule membranes of chromaffin cells. FEBS Lett. 1987 May 11;215(2):339–344. [PubMed]
  • Audigier Y, Nigam SK, Blobel G. Identification of a G protein in rough endoplasmic reticulum of canine pancreas. J Biol Chem. 1988 Nov 5;263(31):16352–16357. [PubMed]
  • Ali N, Milligan G, Evans WH. Distribution of G-proteins in rat liver plasma-membrane domains and endocytic pathways. Biochem J. 1989 Aug 1;261(3):905–912. [PMC free article] [PubMed]
  • Ercolani L, Stow JL, Boyle JF, Holtzman EJ, Lin H, Grove JR, Ausiello DA. Membrane localization of the pertussis toxin-sensitive G-protein subunits alpha i-2 and alpha i-3 and expression of a metallothionein-alpha i-2 fusion gene in LLC-PK1 cells. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4635–4639. [PMC free article] [PubMed]
  • Stow JL, de Almeida JB, Narula N, Holtzman EJ, Ercolani L, Ausiello DA. A heterotrimeric G protein, G alpha i-3, on Golgi membranes regulates the secretion of a heparan sulfate proteoglycan in LLC-PK1 epithelial cells. J Cell Biol. 1991 Sep;114(6):1113–1124. [PMC free article] [PubMed]
  • Hermouet S, de Mazancourt P, Spiegel AM, Farquhar MG, Wilson BS. High level expression of transfected G protein alpha i3 subunit is required for plasma membrane targeting and adenylyl cyclase inhibition in NIH 3T3 fibroblasts. FEBS Lett. 1992 Nov 9;312(2-3):223–228. [PubMed]
  • Wilson BS, Komuro M, Farquhar MG. Cellular variations in heterotrimeric G protein localization and expression in rat pituitary. Endocrinology. 1994 Jan;134(1):233–244. [PubMed]
  • Barr FA, Leyte A, Mollner S, Pfeuffer T, Tooze SA, Huttner WB. Trimeric G-proteins of the trans-Golgi network are involved in the formation of constitutive secretory vesicles and immature secretory granules. FEBS Lett. 1991 Dec 9;294(3):239–243. [PubMed]
  • Leyte A, Barr FA, Kehlenbach RH, Huttner WB. Multiple trimeric G-proteins on the trans-Golgi network exert stimulatory and inhibitory effects on secretory vesicle formation. EMBO J. 1992 Dec;11(13):4795–4804. [PMC free article] [PubMed]
  • Schwaninger R, Plutner H, Bokoch GM, Balch WE. Multiple GTP-binding proteins regulate vesicular transport from the ER to Golgi membranes. J Cell Biol. 1992 Dec;119(5):1077–1096. [PMC free article] [PubMed]
  • Wilson BS, Palade GE, Farquhar MG. Endoplasmic reticulum-through-Golgi transport assay based on O-glycosylation of native glycophorin in permeabilized erythroleukemia cells: role for Gi3. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1681–1685. [PMC free article] [PubMed]
  • Colombo MI, Mayorga LS, Casey PJ, Stahl PD. Evidence of a role for heterotrimeric GTP-binding proteins in endosome fusion. Science. 1992 Mar 27;255(5052):1695–1697. [PubMed]
  • Jones DT, Reed RR. Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J Biol Chem. 1987 Oct 15;262(29):14241–14249. [PubMed]
  • Chien CT, Bartel PL, Sternglanz R, Fields S. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9578–9582. [PMC free article] [PubMed]
  • Schiestl RH, Gietz RD. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet. 1989 Dec;16(5-6):339–346. [PubMed]
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. [PubMed]
  • Guarente L. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 1983;101:181–191. [PubMed]
  • Guan KL, Dixon JE. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem. 1991 Feb 1;192(2):262–267. [PubMed]
  • Freter RR, Irminger JC, Porter JA, Jones SD, Stiles CD. A novel 7-nucleotide motif located in 3' untranslated sequences of the immediate-early gene set mediates platelet-derived growth factor induction of the JE gene. Mol Cell Biol. 1992 Dec;12(12):5288–5300. [PMC free article] [PubMed]
  • Newton JS, Deed RW, Mitchell EL, Murphy JJ, Norton JD. A B cell specific immediate early human gene is located on chromosome band 1q31 and encodes an alpha helical basic phosphoprotein. Biochim Biophys Acta. 1993 Nov 16;1216(2):314–316. [PubMed]
  • Siderovski DP, Heximer SP, Forsdyke DR. A human gene encoding a putative basic helix-loop-helix phosphoprotein whose mRNA increases rapidly in cycloheximide-treated blood mononuclear cells. DNA Cell Biol. 1994 Feb;13(2):125–147. [PubMed]
  • Lee BN, Adams TH. Overexpression of flbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brlA and premature initiation of development. Mol Microbiol. 1994 Oct;14(2):323–334. [PubMed]
  • Dietzel C, Kurjan J. Pheromonal regulation and sequence of the Saccharomyces cerevisiae SST2 gene: a model for desensitization to pheromone. Mol Cell Biol. 1987 Dec;7(12):4169–4177. [PMC free article] [PubMed]
  • Madura K, Varshavsky A. Degradation of G alpha by the N-end rule pathway. Science. 1994 Sep 2;265(5177):1454–1458. [PubMed]
  • Dohlman HG, Apaniesk D, Chen Y, Song J, Nusskern D. Inhibition of G-protein signaling by dominant gain-of-function mutations in Sst2p, a pheromone desensitization factor in Saccharomyces cerevisiae. Mol Cell Biol. 1995 Jul;15(7):3635–3643. [PMC free article] [PubMed]
  • Weiner JL, Guttierez-Steil C, Blumer KJ. Disruption of receptor-G protein coupling in yeast promotes the function of an SST2-dependent adaptation pathway. J Biol Chem. 1993 Apr 15;268(11):8070–8077. [PubMed]
  • Dietzel C, Kurjan J. The yeast SCG1 gene: a G alpha-like protein implicated in the a- and alpha-factor response pathway. Cell. 1987 Sep 25;50(7):1001–1010. [PubMed]
  • Miyajima I, Nakafuku M, Nakayama N, Brenner C, Miyajima A, Kaibuchi K, Arai K, Kaziro Y, Matsumoto K. GPA1, a haploid-specific essential gene, encodes a yeast homolog of mammalian G protein which may be involved in mating factor signal transduction. Cell. 1987 Sep 25;50(7):1011–1019. [PubMed]
  • Cortés R, Hökfelt T, Schalling M, Goldstein M, Goldsmith P, Spiegel A, Unson C, Walsh J. Antiserum raised against residues 159-168 of the guanine nucleotide-binding protein Gi3-alpha reacts with ependymal cells and some neurons in the rat brain containing cholecystokinin- or cholecystokinin- and tyrosine 3-hydroxylase-like immunoreactivities. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9351–9355. [PMC free article] [PubMed]
  • Asano T, Semba R, Kamiya N, Ogasawara N, Kato K. Go, a GTP-binding protein: immunochemical and immunohistochemical localization in the rat. J Neurochem. 1988 Apr;50(4):1164–1169. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...