• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of embojLink to Publisher's site
EMBO J. Dec 20, 1989; 8(13): 3963–3971.
PMCID: PMC401571

Primary structure of sensory rhodopsin I, a prokaryotic photoreceptor.


The gene coding for sensory rhodopsin I (SR-I) has been identified in a restriction fragment of genomic DNA from the Halobacterium halobium strain L33. Of the 1014 nucleotides whose sequence was determined, 720 belong to the structural gene of SR-I. In the 5' non-coding region two putative promoter elements and a ribosomal binding site have been identified. The 3' flanking region bears a potential terminator structure. The SR-I protein moiety carries no signal peptide and is not processed at its N terminus. The C terminus, however, lacks the last aspartic acid residue encoded by the gene. Analysis of the primary structure of SR-I reveals no consistent homology with the eukaryotic photoreceptor rhodopsin, but 14% homology with the halobacterial ion pumps, bacteriorhodopsin (BR) and halorhodopsin (HR). Residues conserved in all three proteins are discussed with respect to their contribution to secondary structure, retinal binding and ion translocation. The aspartic acid residue which mediates in BR the reprotonation of the Schiff base (D96) is replaced in SR-I by a tyrosine (Y87). This amino acid replacement is proposed to be of crucial importance in the evolution of the slow-cycling photosensing pigment SR-I.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.6M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Alam M, Oesterhelt D. Morphology, function and isolation of halobacterial flagella. J Mol Biol. 1984 Jul 15;176(4):459–475. [PubMed]
  • Baldwin JM, Henderson R, Beckman E, Zemlin F. Images of purple membrane at 2.8 A resolution obtained by cryo-electron microscopy. J Mol Biol. 1988 Aug 5;202(3):585–591. [PubMed]
  • Beato M. Gene regulation by steroid hormones. Cell. 1989 Feb 10;56(3):335–344. [PubMed]
  • Blanck A, Oesterhelt D. The halo-opsin gene. II. Sequence, primary structure of halorhodopsin and comparison with bacteriorhodopsin. EMBO J. 1987 Jan;6(1):265–273. [PMC free article] [PubMed]
  • Braiman MS, Mogi T, Stern LJ, Hackett NR, Chao BH, Khorana HG, Rothschild KJ. Vibrational spectroscopy of bacteriorhodopsin mutants: I. Tyrosine-185 protonates and deprotonates during the photocycle. Proteins. 1988;3(4):219–229. [PubMed]
  • Butt HJ, Fendler K, Bamberg E, Tittor J, Oesterhelt D. Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. EMBO J. 1989 Jun;8(6):1657–1663. [PMC free article] [PubMed]
  • Chabre M, Deterre P. Molecular mechanism of visual transduction. Eur J Biochem. 1989 Feb 1;179(2):255–266. [PubMed]
  • Clewell DB. Nature of Col E 1 plasmid replication in Escherichia coli in the presence of the chloramphenicol. J Bacteriol. 1972 May;110(2):667–676. [PMC free article] [PubMed]
  • de Groot HJ, Harbison GS, Herzfeld J, Griffin RG. Nuclear magnetic resonance study of the Schiff base in bacteriorhodopsin: counterion effects on the 15N shift anisotropy. Biochemistry. 1989 Apr 18;28(8):3346–3353. [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Dunker AK. A proton motive force transducer and its role in proton pumps, proton engines, tobacco mosaic virus assembly and hemoglobin allosterism. J Theor Biol. 1982 Jul 7;97(1):95–127. [PubMed]
  • Dunn R, McCoy J, Simsek M, Majumdar A, Chang SH, Rajbhandary UL, Khorana HG. The bacteriorhodopsin gene. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6744–6748. [PMC free article] [PubMed]
  • Ehrlich BE, Schen CR, Spudich JL. Bacterial rhodopsins monitored with fluorescent dyes in vesicles and in vivo. J Membr Biol. 1984;82(1):89–94. [PubMed]
  • Eisenberg D, Weiss RM, Terwilliger TC. The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature. 1982 Sep 23;299(5881):371–374. [PubMed]
  • Engelhard M, Gerwert K, Hess B, Kreutz W, Siebert F. Light-driven protonation changes of internal aspartic acids of bacteriorhodopsin: an investigation by static and time-resolved infrared difference spectroscopy using [4-13C]aspartic acid labeled purple membrane. Biochemistry. 1985 Jan 15;24(2):400–407. [PubMed]
  • Engelman DM, Steitz TA, Goldman A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem. 1986;15:321–353. [PubMed]
  • Gerwert K, Hess B, Soppa J, Oesterhelt D. Role of aspartate-96 in proton translocation by bacteriorhodopsin. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4943–4947. [PMC free article] [PubMed]
  • Godel H, Graser T, Földi P, Pfaender P, Fürst P. Measurement of free amino acids in human biological fluids by high-performance liquid chromatography. J Chromatogr. 1984 Aug 3;297:49–61. [PubMed]
  • Hackett NR, Stern LJ, Chao BH, Kronis KA, Khorana HG. Structure-function studies on bacteriorhodopsin. V. Effects of amino acid substitutions in the putative helix F. J Biol Chem. 1987 Jul 5;262(19):9277–9284. [PubMed]
  • Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. [PubMed]
  • Hasselbacher CA, Spudich JL, Dewey TG. Circular dichroism of halorhodopsin: comparison with bacteriorhodopsin and sensory rhodopsin I. Biochemistry. 1988 Apr 5;27(7):2540–2546. [PubMed]
  • Heyn MP, Westerhausen J, Wallat I, Seiff F. High-sensitivity neutron diffraction of membranes: Location of the Schiff base end of the chromophore of bacteriorhodopsin. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2146–2150. [PMC free article] [PubMed]
  • Hildebrand E, Dencher N. Two photosystems controlling behavioural responses of Halobacterium halobium. Nature. 1975 Sep 4;257(5521):46–48. [PubMed]
  • Schimz A, Hildebrand E. Entrainment and temperature dependence of the response oscillator in Halobacterium halobium. J Bacteriol. 1986 May;166(2):689–692. [PMC free article] [PubMed]
  • Kagramanova VK, Mankin AS, Baratova LA, Bogdanov AA. The 3'-terminal nucleotide sequence of the Halobacterium halobium 16 S rRNA. FEBS Lett. 1982 Jul 19;144(1):177–180. [PubMed]
  • Katz L, Kingsbury DT, Helinski DR. Stimulation by cyclic adenosine monophosphate of plasmid deoxyribonucleic acid replication and catabolite repression of the plasmid deoxyribonucleic acid-protein relaxation complex. J Bacteriol. 1973 May;114(2):577–591. [PMC free article] [PubMed]
  • Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. [PubMed]
  • Lanyi JK. Halorhodopsin: a light-driven chloride ion pump. Annu Rev Biophys Biophys Chem. 1986;15:11–28. [PubMed]
  • Marinetti T, Subramaniam S, Mogi T, Marti T, Khorana HG. Replacement of aspartic residues 85, 96, 115, or 212 affects the quantum yield and kinetics of proton release and uptake by bacteriorhodopsin. Proc Natl Acad Sci U S A. 1989 Jan;86(2):529–533. [PMC free article] [PubMed]
  • Marwan W, Oesterhelt D. Signal formation in the halobacterial photophobic response mediated by a fourth retinal protein (P480). J Mol Biol. 1987 May 20;195(2):333–342. [PubMed]
  • Michel H, Weyer KA, Gruenberg H, Dunger I, Oesterhelt D, Lottspeich F. The 'light' and 'medium' subunits of the photosynthetic reaction centre from Rhodopseudomonas viridis: isolation of the genes, nucleotide and amino acid sequence. EMBO J. 1986 Jun;5(6):1149–1158. [PMC free article] [PubMed]
  • Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. [PubMed]
  • Oesterhelt D, Marwan W. Change of membrane potential is not a component of the photophobic transduction chain in Halobacterium halobium. J Bacteriol. 1987 Aug;169(8):3515–3520. [PMC free article] [PubMed]
  • Oesterhelt D, Tittor J. Two pumps, one principle: light-driven ion transport in halobacteria. Trends Biochem Sci. 1989 Feb;14(2):57–61. [PubMed]
  • Oesterhelt D, Hegemann P, Tittor J. The photocycle of the chloride pump halorhodopsin. II: Quantum yields and a kinetic model. EMBO J. 1985 Sep;4(9):2351–2356. [PMC free article] [PubMed]
  • Reiter WD, Palm P, Zillig W. Analysis of transcription in the archaebacterium Sulfolobus indicates that archaebacterial promoters are homologous to eukaryotic pol II promoters. Nucleic Acids Res. 1988 Jan 11;16(1):1–19. [PMC free article] [PubMed]
  • Renthal R, Brogley L, Vila J. Altered protein-chromophore interaction in dicyclohexylcarbodiimide-modified purple membrane sheets. Biochim Biophys Acta. 1988 Sep 14;935(2):109–114. [PubMed]
  • Schegk ES, Oesterhelt D. Isolation of a prokaryotic photoreceptor: sensory rhodopsin from halobacteria. EMBO J. 1988 Sep;7(9):2925–2933. [PMC free article] [PubMed]
  • Schiffer M, Edmundson AB. Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophys J. 1967 Mar;7(2):121–135. [PMC free article] [PubMed]
  • Schreckenbach T, Walckhoff B, Oesterhelt D. Specificity of the retinal binding site of bacteriorhodopsin: chemical and stereochemical requirements for the binding of retinol and retinal. Biochemistry. 1978 Dec 12;17(25):5353–5359. [PubMed]
  • Soppa J, Oesterhelt D. Bacteriorhodopsin mutants of Halobacterium sp. GRB. I. The 5-bromo-2'-deoxyuridine selection as a method to isolate point mutants in halobacteria. J Biol Chem. 1989 Aug 5;264(22):13043–13048. [PubMed]
  • Soppa J, Otomo J, Straub J, Tittor J, Meessen S, Oesterhelt D. Bacteriorhodopsin mutants of Halobacterium sp. GRB. II. Characterization of mutants. J Biol Chem. 1989 Aug 5;264(22):13049–13056. [PubMed]
  • Spudich JL, Bogomolni RA. Sensory rhodopsins of halobacteria. Annu Rev Biophys Biophys Chem. 1988;17:193–215. [PubMed]
  • Spudich EN, Sundberg SA, Manor D, Spudich JL. Properties of a second sensory receptor protein in Halobacterium halobium phototaxis. Proteins. 1986 Nov;1(3):239–246. [PubMed]
  • Spudich EN, Hasselbacher CA, Spudich JL. Methyl-accepting protein associated with bacterial sensory rhodopsin I. J Bacteriol. 1988 Sep;170(9):4280–4285. [PMC free article] [PubMed]
  • Thomm M, Wich G. An archaebacterial promoter element for stable RNA genes with homology to the TATA box of higher eukaryotes. Nucleic Acids Res. 1988 Jan 11;16(1):151–163. [PMC free article] [PubMed]
  • Tittor J, Soell C, Oesterhelt D, Butt HJ, Bamberg E. A defective proton pump, point-mutated bacteriorhodopsin Asp96----Asn is fully reactivated by azide. EMBO J. 1989 Nov;8(11):3477–3482. [PMC free article] [PubMed]
  • Tsugita A, Uchida T, Mewes HW, Ataka T. A rapid vapor-phase acid (hydrochloric acid and trifluoroacetic acid) hydrolysis of peptide and protein. J Biochem. 1987 Dec;102(6):1593–1597. [PubMed]
  • Vogelsang H, Oertel W, Oesterhelt D. Isolation of the bacterioopsin gene by colony hybridization. Methods Enzymol. 1983;97:226–241. [PubMed]
  • Heijne G. The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J. 1986 Nov;5(11):3021–3027. [PMC free article] [PubMed]
  • Wolff EK, Bogomolni RA, Scherrer P, Hess B, Stoeckenius W. Color discrimination in halobacteria: spectroscopic characterization of a second sensory receptor covering the blue-green region of the spectrum. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7272–7276. [PMC free article] [PubMed]

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...