• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of embojLink to Publisher's site
EMBO J. Jun 15, 1995; 14(12): 2876–2883.
PMCID: PMC398406

Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli.

Abstract

Post-translational activation of the higher eukaryotic transcription factor NF-kappa B requires both phosphorylation and proteolytic degradation of the inhibitory subunit I kappa B-alpha. Inhibition of proteasome activity can stabilize an inducibly phosphorylated form of I kappa B-alpha in intact cells, suggesting that phosphorylation targets the protein for degradation. In this study, we have identified serines 32 and 36 in human I kappa B-alpha as essential for the control of I kappa B-alpha stability and the activation of NF-kappa B in HeLa cells. A point mutant substituting serines 32 and 36 by alanine residues was no longer phosphorylated in response to okadaic acid (OA) stimulation. This and various other Ser32 and Ser36 mutants behaved as potent dominant negative I kappa B proteins attenuating kappa B-dependent transactivation in response to OA, phorbol 12-myristate 13-acetate (PMA) and tumor necrosis factor-alpha (TNF). While both endogenous and transiently expressed wild-type I kappa B-alpha were proteolytically degraded in response to PMA and TNF stimulation of cells, the S32/36A mutant of I kappa B-alpha remained largely intact under these conditions. Our data suggest that such diverse stimuli as OA, TNF and PMA use the same kinase system to phosphorylate and thereby destabilize I kappa B-alpha, leading to NF-kappa B activation.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Baeuerle PA, Baltimore D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science. 1988 Oct 28;242(4878):540–546. [PubMed]
  • Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994;12:141–179. [PubMed]
  • Beg AA, Finco TS, Nantermet PV, Baldwin AS., Jr Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a mechanism for NF-kappa B activation. Mol Cell Biol. 1993 Jun;13(6):3301–3310. [PMC free article] [PubMed]
  • Blank V, Kourilsky P, Israël A. NF-kappa B and related proteins: Rel/dorsal homologies meet ankyrin-like repeats. Trends Biochem Sci. 1992 Apr;17(4):135–140. [PubMed]
  • Bours V, Franzoso G, Azarenko V, Park S, Kanno T, Brown K, Siebenlist U. The oncoprotein Bcl-3 directly transactivates through kappa B motifs via association with DNA-binding p50B homodimers. Cell. 1993 Mar 12;72(5):729–739. [PubMed]
  • Brasier AR, Tate JE, Habener JF. Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. Biotechniques. 1989 Nov-Dec;7(10):1116–1122. [PubMed]
  • Brown K, Park S, Kanno T, Franzoso G, Siebenlist U. Mutual regulation of the transcriptional activator NF-kappa B and its inhibitor, I kappa B-alpha. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2532–2536. [PMC free article] [PubMed]
  • Cordle SR, Donald R, Read MA, Hawiger J. Lipopolysaccharide induces phosphorylation of MAD3 and activation of c-Rel and related NF-kappa B proteins in human monocytic THP-1 cells. J Biol Chem. 1993 Jun 5;268(16):11803–11810. [PubMed]
  • Davis N, Ghosh S, Simmons DL, Tempst P, Liou HC, Baltimore D, Bose HR., Jr Rel-associated pp40: an inhibitor of the rel family of transcription factors. Science. 1991 Sep 13;253(5025):1268–1271. [PubMed]
  • de Martin R, Vanhove B, Cheng Q, Hofer E, Csizmadia V, Winkler H, Bach FH. Cytokine-inducible expression in endothelial cells of an I kappa B alpha-like gene is regulated by NF kappa B. EMBO J. 1993 Jul;12(7):2773–2779. [PMC free article] [PubMed]
  • DiDonato JA, Mercurio F, Karin M. Phosphorylation of I kappa B alpha precedes but is not sufficient for its dissociation from NF-kappa B. Mol Cell Biol. 1995 Mar;15(3):1302–1311. [PMC free article] [PubMed]
  • Donald R, Ballard DW, Hawiger J. Proteolytic processing of NF-kappa B/I kappa B in human monocytes. ATP-dependent induction by pro-inflammatory mediators. J Biol Chem. 1995 Jan 6;270(1):9–12. [PubMed]
  • Ernst MK, Dunn LL, Rice NR. The PEST-like sequence of I kappa B alpha is responsible for inhibition of DNA binding but not for cytoplasmic retention of c-Rel or RelA homodimers. Mol Cell Biol. 1995 Feb;15(2):872–882. [PMC free article] [PubMed]
  • Finco TS, Beg AA, Baldwin AS., Jr Inducible phosphorylation of I kappa B alpha is not sufficient for its dissociation from NF-kappa B and is inhibited by protease inhibitors. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11884–11888. [PMC free article] [PubMed]
  • Ganchi PA, Sun SC, Greene WC, Ballard DW. I kappa B/MAD-3 masks the nuclear localization signal of NF-kappa B p65 and requires the transactivation domain to inhibit NF-kappa B p65 DNA binding. Mol Biol Cell. 1992 Dec;3(12):1339–1352. [PMC free article] [PubMed]
  • Ghosh S, Baltimore D. Activation in vitro of NF-kappa B by phosphorylation of its inhibitor I kappa B. Nature. 1990 Apr 12;344(6267):678–682. [PubMed]
  • Gilmore TD, Morin PJ. The I kappa B proteins: members of a multifunctional family. Trends Genet. 1993 Dec;9(12):427–433. [PubMed]
  • Grilli M, Chiu JJ, Lenardo MJ. NF-kappa B and Rel: participants in a multiform transcriptional regulatory system. Int Rev Cytol. 1993;143:1–62. [PubMed]
  • Haskill S, Beg AA, Tompkins SM, Morris JS, Yurochko AD, Sampson-Johannes A, Mondal K, Ralph P, Baldwin AS., Jr Characterization of an immediate-early gene induced in adherent monocytes that encodes I kappa B-like activity. Cell. 1991 Jun 28;65(7):1281–1289. [PubMed]
  • Hatada EN, Naumann M, Scheidereit C. Common structural constituents confer I kappa B activity to NF-kappa B p105 and I kappa B/MAD-3. EMBO J. 1993 Jul;12(7):2781–2788. [PMC free article] [PubMed]
  • Henkel T, Machleidt T, Alkalay I, Krönke M, Ben-Neriah Y, Baeuerle PA. Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature. 1993 Sep 9;365(6442):182–185. [PubMed]
  • Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. [PubMed]
  • Hunter T, Karin M. The regulation of transcription by phosphorylation. Cell. 1992 Aug 7;70(3):375–387. [PubMed]
  • Ingham P. Signal transduction. Dorsal developments. Nature. 1994 Dec 8;372(6506):500–501. [PubMed]
  • Inoue J, Kerr LD, Rashid D, Davis N, Bose HR, Jr, Verma IM. Direct association of pp40/I kappa B beta with rel/NF-kappa B transcription factors: role of ankyrin repeats in the inhibition of DNA binding activity. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4333–4337. [PMC free article] [PubMed]
  • Ivanov V, Stein B, Baumann I, Dobbelaere DA, Herrlich P, Williams RO. Infection with the intracellular protozoan parasite Theileria parva induces constitutively high levels of NF-kappa B in bovine T lymphocytes. Mol Cell Biol. 1989 Nov;9(11):4677–4686. [PMC free article] [PubMed]
  • Kanno T, Brown K, Franzoso G, Siebenlist U. Kinetic analysis of human T-cell leukemia virus type I Tax-mediated activation of NF-kappa B. Mol Cell Biol. 1994 Oct;14(10):6443–6451. [PMC free article] [PubMed]
  • Lernbecher T, Kistler B, Wirth T. Two distinct mechanisms contribute to the constitutive activation of RelB in lymphoid cells. EMBO J. 1994 Sep 1;13(17):4060–4069. [PMC free article] [PubMed]
  • Li CC, Korner M, Ferris DK, Chen E, Dai RM, Longo DL. NF-kappa B/Rel family members are physically associated phosphoproteins. Biochem J. 1994 Oct 15;303(Pt 2):499–506. [PMC free article] [PubMed]
  • Liou HC, Baltimore D. Regulation of the NF-kappa B/rel transcription factor and I kappa B inhibitor system. Curr Opin Cell Biol. 1993 Jun;5(3):477–487. [PubMed]
  • Mellits KH, Hay RT, Goodbourn S. Proteolytic degradation of MAD3 (I kappa B alpha) and enhanced processing of the NF-kappa B precursor p105 are obligatory steps in the activation of NF-kappa B. Nucleic Acids Res. 1993 Nov 11;21(22):5059–5066. [PMC free article] [PubMed]
  • Menon SD, Qin S, Guy GR, Tan YH. Differential induction of nuclear NF-kappa B by protein phosphatase inhibitors in primary and transformed human cells. Requirement for both oxidation and phosphorylation in nuclear translocation. J Biol Chem. 1993 Dec 15;268(35):26805–26812. [PubMed]
  • Miyamoto S, Maki M, Schmitt MJ, Hatanaka M, Verma IM. Tumor necrosis factor alpha-induced phosphorylation of I kappa B alpha is a signal for its degradation but not dissociation from NF-kappa B. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12740–12744. [PMC free article] [PubMed]
  • Naumann M, Scheidereit C. Activation of NF-kappa B in vivo is regulated by multiple phosphorylations. EMBO J. 1994 Oct 3;13(19):4597–4607. [PMC free article] [PubMed]
  • Neumann M, Tsapos K, Scheppler JA, Ross J, Franza BR., Jr Identification of complex formation between two intracellular tyrosine kinase substrates: human c-Rel and the p105 precursor of p50 NF-kappa B. Oncogene. 1992 Nov;7(11):2095–2104. [PubMed]
  • ole-MoiYoi OK, Brown WC, Iams KP, Nayar A, Tsukamoto T, Macklin MD. Evidence for the induction of casein kinase II in bovine lymphocytes transformed by the intracellular protozoan parasite Theileria parva. EMBO J. 1993 Apr;12(4):1621–1631. [PMC free article] [PubMed]
  • Ostrowski J, Sims JE, Sibley CH, Valentine MA, Dower SK, Meier KE, Bomsztyk K. A serine/threonine kinase activity is closely associated with a 65-kDa phosphoprotein specifically recognized by the kappa B enhancer element. J Biol Chem. 1991 Jul 5;266(19):12722–12733. [PubMed]
  • Palombella VJ, Rando OJ, Goldberg AL, Maniatis T. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell. 1994 Sep 9;78(5):773–785. [PubMed]
  • Pearson RB, Kemp BE. Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol. 1991;200:62–81. [PubMed]
  • Rice NR, Ernst MK. In vivo control of NF-kappa B activation by I kappa B alpha. EMBO J. 1993 Dec;12(12):4685–4695. [PMC free article] [PubMed]
  • Schmitz ML, Baeuerle PA. The p65 subunit is responsible for the strong transcription activating potential of NF-kappa B. EMBO J. 1991 Dec;10(12):3805–3817. [PMC free article] [PubMed]
  • Schmitz ML, Henkel T, Baeuerle PA. Proteins controlling the nuclear uptake of NF-kappa B, Rel and dorsal. Trends Cell Biol. 1991 Nov;1(5):130–137. [PubMed]
  • Shirakawa F, Mizel SB. In vitro activation and nuclear translocation of NF-kappa B catalyzed by cyclic AMP-dependent protein kinase and protein kinase C. Mol Cell Biol. 1989 Jun;9(6):2424–2430. [PMC free article] [PubMed]
  • Seldin DC, Leder P. Casein kinase II alpha transgene-induced murine lymphoma: relation to theileriosis in cattle. Science. 1995 Feb 10;267(5199):894–897. [PubMed]
  • Sun SC, Ganchi PA, Béraud C, Ballard DW, Greene WC. Autoregulation of the NF-kappa B transactivator RelA (p65) by multiple cytoplasmic inhibitors containing ankyrin motifs. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1346–1350. [PMC free article] [PubMed]
  • Sun SC, Elwood J, Béraud C, Greene WC. Human T-cell leukemia virus type I Tax activation of NF-kappa B/Rel involves phosphorylation and degradation of I kappa B alpha and RelA (p65)-mediated induction of the c-rel gene. Mol Cell Biol. 1994 Nov;14(11):7377–7384. [PMC free article] [PubMed]
  • Tewari M, Dobrzanski P, Mohn KL, Cressman DE, Hsu JC, Bravo R, Taub R. Rapid induction in regenerating liver of RL/IF-1 (an I kappa B that inhibits NF-kappa B, RelB-p50, and c-Rel-p50) and PHF, a novel kappa B site-binding complex. Mol Cell Biol. 1992 Jun;12(6):2898–2908. [PMC free article] [PubMed]
  • Traenckner EB, Wilk S, Baeuerle PA. A proteasome inhibitor prevents activation of NF-kappa B and stabilizes a newly phosphorylated form of I kappa B-alpha that is still bound to NF-kappa B. EMBO J. 1994 Nov 15;13(22):5433–5441. [PMC free article] [PubMed]
  • Whalen AM, Steward R. Dissociation of the dorsal-cactus complex and phosphorylation of the dorsal protein correlate with the nuclear localization of dorsal. J Cell Biol. 1993 Nov;123(3):523–534. [PMC free article] [PubMed]
  • Wigler M, Pellicer A, Silverstein S, Axel R. Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor. Cell. 1978 Jul;14(3):725–731. [PubMed]

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...