• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Apr 2, 1996; 93(7): 2873–2878.
PMCID: PMC39726

Accelerated evolution and Muller's rachet in endosymbiotic bacteria.

Abstract

Many bacteria live only within animal cells and infect hosts through cytoplasmic inheritance. These endosymbiotic lineages show distinctive population structure, with small population size and effectively no recombination. As a result, endosymbionts are expected to accumulate mildly deleterious mutations. If these constitute a substantial proportion of new mutations, endosymbionts will show (i) faster sequence evolution and (ii) a possible shift in base composition reflecting mutational bias. Analyses of 16S rDNA of five independently derived endosymbiont clades show, in every case, faster evolution in endosymbionts than in free-living relatives. For aphid endosymbionts (genus Buchnera), coding genes exhibit accelerated evolution and unusually low ratios of synonymous to nonsynonymous substitutions compared to ratios for the same genes for enterics. This concentration of the rate increase in nonsynonymous substitutions is expected under the hypothesis of increased fixation of deleterious mutations. Polypeptides for all Buchnera genes analyzed have accumulated amino acids with codon families rich in A+T, supporting the hypothesis that substitutions are deleterious in terms of polypeptide function. These observations are best explained as the result of Muller's ratchet within small asexual populations, combined with mutational bias. In light of this explanation, two observations reported earlier for Buchnera, the apparent loss of a repair gene and the overproduction of a chaperonin, may reflect compensatory evolution. An alternative hypothesis, involving selection on genomic base composition, is contradicted by the observation that the speedup is concentrated at nonsynonymous sites.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Felsenstein J. The evolutionary advantage of recombination. Genetics. 1974 Oct;78(2):737–756. [PMC free article] [PubMed]
  • Kondrashov AS. Deleterious mutations and the evolution of sexual reproduction. Nature. 1988 Dec 1;336(6198):435–440. [PubMed]
  • Lynch M, Bürger R, Butcher D, Gabriel W. The mutational meltdown in asexual populations. J Hered. 1993 Sep-Oct;84(5):339–344. [PubMed]
  • Stephan W, Chao L, Smale JG. The advance of Muller's ratchet in a haploid asexual population: approximate solutions based on diffusion theory. Genet Res. 1993 Jun;61(3):225–231. [PubMed]
  • McKane M, Milkman R. Transduction, restriction and recombination patterns in Escherichia coli. Genetics. 1995 Jan;139(1):35–43. [PMC free article] [PubMed]
  • Milkman R, Bridges MM. Molecular evolution of the Escherichia coli chromosome. IV. Sequence comparisons. Genetics. 1993 Mar;133(3):455–468. [PMC free article] [PubMed]
  • Whittam TS. Sex in the soil. Curr Biol. 1992 Dec;2(12):676–678. [PubMed]
  • Dykhuizen DE, Green L. Recombination in Escherichia coli and the definition of biological species. J Bacteriol. 1991 Nov;173(22):7257–7268. [PMC free article] [PubMed]
  • Guttman DS, Dykhuizen DE. Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science. 1994 Nov 25;266(5189):1380–1383. [PubMed]
  • Munson MA, Baumann P, Moran NA. Phylogenetic relationships of the endosymbionts of mealybugs (Homoptera: Pseudococcidae) based on 16S rDNA sequences. Mol Phylogenet Evol. 1992 Mar;1(1):26–30. [PubMed]
  • Ohtaka C, Ishikawa H. Accumulation of adenine and thymine in a groE-homologous operon of an intracellular symbiont. J Mol Evol. 1993 Feb;36(2):121–126. [PubMed]
  • Munson MA, Baumann P, Clark MA, Baumann L, Moran NA, Voegtlin DJ, Campbell BC. Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families. J Bacteriol. 1991 Oct;173(20):6321–6324. [PMC free article] [PubMed]
  • Aksoy S, Pourhosseini AA, Chow A. Mycetome endosymbionts of tsetse flies constitute a distinct lineage related to Enterobacteriaceae. Insect Mol Biol. 1995 Feb;4(1):15–22. [PubMed]
  • Breeuwer JA, Stouthamer R, Barns SM, Pelletier DA, Weisburg WG, Werren JH. Phylogeny of cytoplasmic incompatibility micro-organisms in the parasitoid wasp genus Nasonia (Hymenoptera: Pteromalidae) based on 16S ribosomal DNA sequences. Insect Mol Biol. 1992;1(1):25–36. [PubMed]
  • Muse SV, Weir BS. Testing for equality of evolutionary rates. Genetics. 1992 Sep;132(1):269–276. [PMC free article] [PubMed]
  • Wu CI, Li WH. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1741–1745. [PMC free article] [PubMed]
  • Woese CR. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. [PMC free article] [PubMed]
  • Larsen N, Olsen GJ, Maidak BL, McCaughey MJ, Overbeek R, Macke TJ, Marsh TL, Woese CR. The ribosomal database project. Nucleic Acids Res. 1993 Jul 1;21(13):3021–3023. [PMC free article] [PubMed]
  • Lai CY, Baumann L, Baumann P. Amplification of trpEG: adaptation of Buchnera aphidicola to an endosymbiotic association with aphids. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3819–3823. [PMC free article] [PubMed]
  • Lai CY, Baumann P, Moran NA. Genetics of the tryptophan biosynthetic pathway of the prokaryotic endosymbiont (Buchnera) of the aphid Schlechtendalia chinensis. Insect Mol Biol. 1995 Feb;4(1):47–59. [PubMed]
  • Lai CY, Baumann P. Genetic analysis of an aphid endosymbiont DNA fragment homologous to the rnpA-rpmH-dnaA-dnaN-gyrB region of eubacteria. Gene. 1992 Apr 15;113(2):175–181. [PubMed]
  • Lai CY, Baumann P. Sequence analysis of a DNA fragment from Buchnera aphidicola (an endosymbiont of aphids) containing genes homologous to dnaG, rpoD, cysE, and secB. Gene. 1992 Sep 21;119(1):113–118. [PubMed]
  • O'Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2699–2702. [PMC free article] [PubMed]
  • Li WH. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol. 1993 Jan;36(1):96–99. [PubMed]
  • Ochman H, Wilson AC. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol. 1987;26(1-2):74–86. [PubMed]
  • Munson MA, Baumann L, Baumann P. Buchnera aphidicola (a prokaryotic endosymbiont of aphids) contains a putative 16S rRNA operon unlinked to the 23S rRNA-encoding gene: sequence determination, and promoter and terminator analysis. Gene. 1993 Dec 31;137(2):171–178. [PubMed]
  • Baumann P, Baumann L, Lai CY, Rouhbakhsh D, Moran NA, Clark MA. Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu Rev Microbiol. 1995;49:55–94. [PubMed]
  • Clark MA, Baumann L, Baumann P. Sequence analysis of an aphid endosymbiont DNA fragment containing rpoB (beta-subunit of RNA polymerase) and portions of rplL and rpoC. Curr Microbiol. 1992 Nov;25(5):283–290. [PubMed]
  • Jermiin LS, Graur D, Lowe RM, Crozier RH. Analysis of directional mutation pressure and nucleotide content in mitochondrial cytochrome b genes. J Mol Evol. 1994 Aug;39(2):160–173. [PubMed]
  • Muto A, Osawa S. The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci U S A. 1987 Jan;84(1):166–169. [PMC free article] [PubMed]
  • Sueoka N. CORRELATION BETWEEN BASE COMPOSITION OF DEOXYRIBONUCLEIC ACID AND AMINO ACID COMPOSITION OF PROTEIN. Proc Natl Acad Sci U S A. 1961 Aug;47(8):1141–1149. [PMC free article] [PubMed]
  • Sueoka N. Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2653–2657. [PMC free article] [PubMed]
  • Sharp PM, Li WH. An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol. 1986;24(1-2):28–38. [PubMed]
  • Hughes AL, Hughes MK. Adaptive evolution in the rat olfactory receptor gene family. J Mol Evol. 1993 Mar;36(3):249–254. [PubMed]
  • Hughes AL. Contrasting evolutionary rates in the duplicate chaperonin genes of Mycobacterium tuberculosis and M. leprae. Mol Biol Evol. 1993 Nov;10(6):1343–1359. [PubMed]
  • Jollès J, Jollès P, Bowman BH, Prager EM, Stewart CB, Wilson AC. Episodic evolution in the stomach lysozymes of ruminants. J Mol Evol. 1989 Jun;28(6):528–535. [PubMed]
  • Swanson WJ, Vacquier VD. Extraordinary divergence and positive Darwinian selection in a fusagenic protein coating the acrosomal process of abalone spermatozoa. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4957–4961. [PMC free article] [PubMed]
  • Andersson SG, Kurland CG. Codon preferences in free-living microorganisms. Microbiol Rev. 1990 Jun;54(2):198–210. [PMC free article] [PubMed]
  • Winkler HH, Wood DO. Codon usage in selected AT-rich bacteria. Biochimie. 1988 Aug;70(8):977–986. [PubMed]
  • Kondrashov AS. Mutation load under vegetative reproduction and cytoplasmic inheritance. Genetics. 1994 May;137(1):311–318. [PMC free article] [PubMed]
  • Ishikawa H. Biochemical and molecular aspects of endosymbiosis in insects. Int Rev Cytol. 1989;116:1–45. [PubMed]
  • Aksoy S. Molecular analysis of the endosymbionts of tsetse flies: 16S rDNA locus and over-expression of a chaperonin. Insect Mol Biol. 1995 Feb;4(1):23–29. [PubMed]
  • Becker J, Craig EA. Heat-shock proteins as molecular chaperones. Eur J Biochem. 1994 Jan 15;219(1-2):11–23. [PubMed]
  • Hartl FU. Protein folding. Secrets of a double-doughnut. Nature. 1994 Oct 13;371(6498):557–559. [PubMed]
  • Hendrick JP, Hartl FU. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem. 1993;62:349–384. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...