• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Jan 1985; 82(1): 153–157.
PMCID: PMC396990

Interaction of selection and biased gene conversion in a multigene family.

Abstract

A model of the evolutionary dynamics of a multigene family in a finite population under the joint effects of selection and (possibly biased) gene conversion is analyzed. It is assumed that the loss or fixation of a polymorphism at any particular locus in the gene family occurs on a much faster time scale than the introduction of new alleles to a monomorphic locus by gene conversion. A general formula for the fixation of a new allele throughout a multigene family for a wide class of selection functions with biased gene conversion is given for this assumption. Analysis for the case of additive selection shows that (i) unless selection is extremely weak or bias is exceptionally strong, selection usually dominates the fixation dynamics, (ii) if selection is very weak, then even a slight conversion bias can greatly alter the fixation probabilities, and (iii) if both selection and conversion bias are sufficiently small, the substitution rate of new alleles throughout a multigene family is approximately the single locus mutation rate, the same result as for neutral alleles at a single-copy gene. Finally, I analyze a fairly general class of underdominant speciation models involving multigene families, concluding for these models under weak conversion that although the probability of fixation may be relatively high, the expected time to fixation is extremely long, so that speciation by "molecular drive" is unlikely. Furthermore, speciation occurs faster by fixing underdominant alleles of the same effect at single-copy genes than by fixing the same number of loci in a single multigene family under the joint effects of selection, conversion, and drift.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Smith GP. Unequal crossover and the evolution of multigene families. Cold Spring Harb Symp Quant Biol. 1974;38:507–513. [PubMed]
  • Ohta T. On the evolution of multigene families. Theor Popul Biol. 1983 Apr;23(2):216–240. [PubMed]
  • Ohta T. Some models of gene conversion for treating the evolution of multigene families. Genetics. 1984 Mar;106(3):517–528. [PMC free article] [PubMed]
  • Nagylaki T. The evolution of multigene families under intrachromosomal gene conversion. Genetics. 1984 Mar;106(3):529–548. [PMC free article] [PubMed]
  • Nagylaki T, Petes TD. Intrachromosomal gene conversion and the maintenance of sequence homogeneity among repeated genes. Genetics. 1982 Feb;100(2):315–337. [PMC free article] [PubMed]
  • Ohta T. Genetic variation in small multigene families. Genet Res. 1981 Apr;37(2):133–149. [PubMed]
  • Hickey DA. Selfish DNA: a sexually-transmitted nuclear parasite. Genetics. 1982 Jul-Aug;101(3-4):519–531. [PMC free article] [PubMed]
  • Nagylaki T. Evolution of a finite population under gene conversion. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6278–6281. [PMC free article] [PubMed]
  • Walsh JB. Role of biased gene conversion in one-locus neutral theory and genome evolution. Genetics. 1983 Oct;105(2):461–468. [PMC free article] [PubMed]
  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. [PubMed]
  • Meselson MS, Radding CM. A general model for genetic recombination. Proc Natl Acad Sci U S A. 1975 Jan;72(1):358–361. [PMC free article] [PubMed]
  • Kimura M. Evolutionary rate at the molecular level. Nature. 1968 Feb 17;217(5129):624–626. [PubMed]
  • Dover G. Molecular drive: a cohesive mode of species evolution. Nature. 1982 Sep 9;299(5879):111–117. [PubMed]
  • Kimura M. Possibility of extensive neutral evolution under stabilizing selection with special reference to nonrandom usage of synonymous codons. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5773–5777. [PMC free article] [PubMed]
  • Kimura M, Ohta T. The Average Number of Generations until Fixation of a Mutant Gene in a Finite Population. Genetics. 1969 Mar;61(3):763–771. [PMC free article] [PubMed]
  • Hayashida H, Miyata T. Unusual evolutionary conservation and frequent DNA segment exchange in class I genes of the major histocompatibility complex. Proc Natl Acad Sci U S A. 1983 May;80(9):2671–2675. [PMC free article] [PubMed]
  • Mellor AL, Weiss EH, Ramachandran K, Flavell RA. A potential donor gene for the bm1 gene conversion event in the C57BL mouse. Nature. 1983 Dec 22;306(5945):792–795. [PubMed]
  • Rose MR, Doolittle WF. Molecular biological mechanisms of speciation. Science. 1983 Apr 8;220(4593):157–162. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • PubMed
    PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...