• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of embojLink to Publisher's site
EMBO J. Oct 3, 1994; 13(19): 4629–4635.
PMCID: PMC395396

Self-splicing group I intron in cyanobacterial initiator methionine tRNA: evidence for lateral transfer of introns in bacteria.


A group I self-splicing intron has been found in the anticodon loop of tRNA(fMet) genes in three cyanobacterial genera: Dermocarpa, Scytonema and Synechocystis; it is absent in nine others. The Synechocystis intron is also interrupted by an open reading frame (ORF) of 150 codons. Of these three bacteria, only Scytonema also contains the group I intron that has previously been reported in tRNA(Leu) (UAA) genes in both cyanobacteria and chloroplasts. The presence of an ORF in the tRNA(fMet) intron, the sporadic distribution of the intron among cyanobacteria and the lack of correlation between relatedness of the intron sequences and the bacteria in which they reside, are all consistent with recent introduction of this intron by lateral transfer.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. [PubMed]
  • Benson D, Lipman DJ, Ostell J. GenBank. Nucleic Acids Res. 1993 Jul 1;21(13):2963–2965. [PMC free article] [PubMed]
  • Doolittle WF. The origins of introns. Curr Biol. 1991 Jun;1(3):145–146. [PubMed]
  • Dujon B. Group I introns as mobile genetic elements: facts and mechanistic speculations--a review. Gene. 1989 Oct 15;82(1):91–114. [PubMed]
  • Dunn JJ, Studier FW. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol. 1983 Jun 5;166(4):477–535. [PubMed]
  • Ecarot-Charrier B, Cedergren RJ. The preliminary sequence of tRNA Met F from Anacystis nidulans compared with other initiator tRNAs. FEBS Lett. 1976 Apr 1;63(2):287–290. [PubMed]
  • Feinberg AP, Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. [PubMed]
  • Garriga G, Lambowitz AM. RNA splicing in neurospora mitochondria: self-splicing of a mitochondrial intron in vitro. Cell. 1984 Dec;39(3 Pt 2):631–641. [PubMed]
  • Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR. Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol. 1988 Aug;170(8):3584–3592. [PMC free article] [PubMed]
  • Kuhsel MG, Strickland R, Palmer JD. An ancient group I intron shared by eubacteria and chloroplasts. Science. 1990 Dec 14;250(4987):1570–1573. [PubMed]
  • Mohr G, Perlman PS, Lambowitz AM. Evolutionary relationships among group II intron-encoded proteins and identification of a conserved domain that may be related to maturase function. Nucleic Acids Res. 1993 Nov 11;21(22):4991–4997. [PMC free article] [PubMed]
  • Ohta E, Oda K, Yamato K, Nakamura Y, Takemura M, Nozato N, Akashi K, Ohyama K, Michel F. Group I introns in the liverwort mitochondrial genome: the gene coding for subunit 1 of cytochrome oxidase shares five intron positions with its fungal counterparts. Nucleic Acids Res. 1993 Mar 11;21(5):1297–1305. [PMC free article] [PubMed]
  • Perler FB, Comb DG, Jack WE, Moran LS, Qiang B, Kucera RB, Benner J, Slatko BE, Nwankwo DO, Hempstead SK, et al. Intervening sequences in an Archaea DNA polymerase gene. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5577–5581. [PMC free article] [PubMed]
  • Perlman PS, Butow RA. Mobile introns and intron-encoded proteins. Science. 1989 Dec 1;246(4934):1106–1109. [PubMed]
  • RajBhandary UL. Initiator transfer RNAs. J Bacteriol. 1994 Feb;176(3):547–552. [PMC free article] [PubMed]
  • Reinhold-Hurek B, Shub DA. Self-splicing introns in tRNA genes of widely divergent bacteria. Nature. 1992 May 14;357(6374):173–176. [PubMed]
  • Roger AJ, Doolittle WF. Molecular evolution. Why introns-in-pieces? Nature. 1993 Jul 22;364(6435):289–290. [PubMed]
  • Schmidt J, Subramanian AR. Sequence of the cyanobacterial tRNA(w) gene in Synechocystis PCC 6803: requirement of enzymatic 3' CCA attachment to the acceptor stem. Nucleic Acids Res. 1993 May 25;21(10):2519–2519. [PMC free article] [PubMed]
  • Shub DA, Goodrich-Blair H. Protein introns: a new home for endonucleases. Cell. 1992 Oct 16;71(2):183–186. [PubMed]
  • Xu MQ, Kathe SD, Goodrich-Blair H, Nierzwicki-Bauer SA, Shub DA. Bacterial origin of a chloroplast intron: conserved self-splicing group I introns in cyanobacteria. Science. 1990 Dec 14;250(4987):1566–1570. [PubMed]

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...