• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of embojLink to Publisher's site
EMBO J. Sep 1, 1994; 13(17): 4126–4136.
PMCID: PMC395335

Competition between nuclear localization and secretory signals determines the subcellular fate of a single CUG-initiated form of FGF3.


The presumed open reading frame for mouse FGF3, starting at the most 5' AUG codon, predicts a hydrophobic N-terminus characteristic of a signal peptide for secretion. However, in reticulocyte lysates and transfected COS-1 cells, the full-length Fgf-3 cDNA is translated almost exclusively from an upstream CUG codon. The resultant products are distributed in both the nucleus and the secretory pathway, implying that the single CUG-initiated form of FGF3 has dual fates. By analysing a series of deletion and replacement mutants and by linking parts of FGF3 to a heterologous protein, we show that secretion is mediated by cleavage adjacent to the previously defined signal peptide, whereas nuclear localization is determined primarily by a classical but relatively weak bipartite motif. In the context of FGF3, nuclear localization also requires the N-terminal sequences which lie upstream of the signal peptide. Thus, the subcellular fate of FGF3 is determined by the competing effects of signals for secretion and nuclear localization within the same protein, rather than by alternative initiation or processing.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.9M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Acland P, Dixon M, Peters G, Dickson C. Subcellular fate of the int-2 oncoprotein is determined by choice of initiation codon. Nature. 1990 Feb 15;343(6259):662–665. [PubMed]
  • Akey CW, Goldfarb DS. Protein import through the nuclear pore complex is a multistep process. J Cell Biol. 1989 Sep;109(3):971–982. [PMC free article] [PubMed]
  • Brookes S, Smith R, Casey G, Dickson C, Peters G. Sequence organization of the human int-2 gene and its expression in teratocarcinoma cells. Oncogene. 1989 Apr;4(4):429–436. [PubMed]
  • Bugler B, Amalric F, Prats H. Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor. Mol Cell Biol. 1991 Jan;11(1):573–577. [PMC free article] [PubMed]
  • Cavener DR, Ray SC. Eukaryotic start and stop translation sites. Nucleic Acids Res. 1991 Jun 25;19(12):3185–3192. [PMC free article] [PubMed]
  • Dingwall C, Laskey RA. Nuclear targeting sequences--a consensus? Trends Biochem Sci. 1991 Dec;16(12):478–481. [PubMed]
  • Dixon M, Deed R, Acland P, Moore R, Whyte A, Peters G, Dickson C. Detection and characterization of the fibroblast growth factor-related oncoprotein INT-2. Mol Cell Biol. 1989 Nov;9(11):4896–4902. [PMC free article] [PubMed]
  • Dworetzky SI, Lanford RE, Feldherr CM. The effects of variations in the number and sequence of targeting signals on nuclear uptake. J Cell Biol. 1988 Oct;107(4):1279–1287. [PMC free article] [PubMed]
  • Evan GI, Lewis GK, Ramsay G, Bishop JM. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol. 1985 Dec;5(12):3610–3616. [PMC free article] [PubMed]
  • Flinta C, Persson B, Jörnvall H, von Heijne G. Sequence determinants of cytosolic N-terminal protein processing. Eur J Biochem. 1986 Jan 2;154(1):193–196. [PubMed]
  • Florkiewicz RZ, Sommer A. Human basic fibroblast growth factor gene encodes four polypeptides: three initiate translation from non-AUG codons. Proc Natl Acad Sci U S A. 1989 Jun;86(11):3978–3981. [PMC free article] [PubMed]
  • Garcia-Bustos J, Heitman J, Hall MN. Nuclear protein localization. Biochim Biophys Acta. 1991 Mar 7;1071(1):83–101. [PubMed]
  • Gilmore R. Protein translocation across the endoplasmic reticulum: a tunnel with toll booths at entry and exit. Cell. 1993 Nov 19;75(4):589–592. [PubMed]
  • Grinberg D, Thurlow J, Watson R, Smith R, Peters G, Dickson C. Transcriptional regulation of the int-2 gene in embryonal carcinoma cells. Cell Growth Differ. 1991 Mar;2(3):137–143. [PubMed]
  • Hann SR, King MW, Bentley DL, Anderson CW, Eisenman RN. A non-AUG translational initiation in c-myc exon 1 generates an N-terminally distinct protein whose synthesis is disrupted in Burkitt's lymphomas. Cell. 1988 Jan 29;52(2):185–195. [PubMed]
  • Kalderon D, Roberts BL, Richardson WD, Smith AE. A short amino acid sequence able to specify nuclear location. Cell. 1984 Dec;39(3 Pt 2):499–509. [PubMed]
  • Kiefer P, Peters G, Dickson C. The Int-2/Fgf-3 oncogene product is secreted and associates with extracellular matrix: implications for cell transformation. Mol Cell Biol. 1991 Dec;11(12):5929–5936. [PMC free article] [PubMed]
  • Kiefer P, Mathieu M, Close MJ, Peters G, Dickson C. FGF3 from Xenopus laevis. EMBO J. 1993 Nov;12(11):4159–4168. [PMC free article] [PubMed]
  • Kiefer P, Peters G, Dickson C. Retention of fibroblast growth factor 3 in the Golgi complex may regulate its export from cells. Mol Cell Biol. 1993 Sep;13(9):5781–5793. [PMC free article] [PubMed]
  • Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. [PMC free article] [PubMed]
  • Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. [PMC free article] [PubMed]
  • Kozak M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8301–8305. [PMC free article] [PubMed]
  • Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991 Nov;115(4):887–903. [PMC free article] [PubMed]
  • Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem. 1991 Oct 25;266(30):19867–19870. [PubMed]
  • Lanford RE, Kanda P, Kennedy RC. Induction of nuclear transport with a synthetic peptide homologous to the SV40 T antigen transport signal. Cell. 1986 Aug 15;46(4):575–582. [PubMed]
  • Laskey RA, Dingwall C. Nuclear shuttling: the default pathway for nuclear proteins? Cell. 1993 Aug 27;74(4):585–586. [PubMed]
  • Lock P, Ralph S, Stanley E, Boulet I, Ramsay R, Dunn AR. Two isoforms of murine hck, generated by utilization of alternative translational initiation codons, exhibit different patterns of subcellular localization. Mol Cell Biol. 1991 Sep;11(9):4363–4370. [PMC free article] [PubMed]
  • Mansour SL, Martin GR. Four classes of mRNA are expressed from the mouse int-2 gene, a member of the FGF gene family. EMBO J. 1988 Jul;7(7):2035–2041. [PMC free article] [PubMed]
  • Moore MS, Blobel G. The two steps of nuclear import, targeting to the nuclear envelope and translocation through the nuclear pore, require different cytosolic factors. Cell. 1992 Jun 12;69(6):939–950. [PubMed]
  • Munro S, Pelham HR. An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell. 1986 Jul 18;46(2):291–300. [PubMed]
  • Pappin DJ, Coull JM, Köster H. Solid-phase sequence analysis of proteins electroblotted or spotted onto polyvinylidene difluoride membranes. Anal Biochem. 1990 May 15;187(1):10–19. [PubMed]
  • Prats H, Kaghad M, Prats AC, Klagsbrun M, Lélias JM, Liauzun P, Chalon P, Tauber JP, Amalric F, Smith JA, et al. High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1836–1840. [PMC free article] [PubMed]
  • Renko M, Quarto N, Morimoto T, Rifkin DB. Nuclear and cytoplasmic localization of different basic fibroblast growth factor species. J Cell Physiol. 1990 Jul;144(1):108–114. [PubMed]
  • Richardson WD, Mills AD, Dilworth SM, Laskey RA, Dingwall C. Nuclear protein migration involves two steps: rapid binding at the nuclear envelope followed by slower translocation through nuclear pores. Cell. 1988 Mar 11;52(5):655–664. [PubMed]
  • Robbins J, Dilworth SM, Laskey RA, Dingwall C. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell. 1991 Feb 8;64(3):615–623. [PubMed]
  • Roberts BL, Richardson WD, Smith AE. The effect of protein context on nuclear location signal function. Cell. 1987 Jul 31;50(3):465–475. [PubMed]
  • Sharma S, Rodgers L, Brandsma J, Gething MJ, Sambrook J. SV40 T antigen and the exocytotic pathway. EMBO J. 1985 Jun;4(6):1479–1489. [PMC free article] [PubMed]
  • Smith R, Peters G, Dickson C. Multiple RNAs expressed from the int-2 gene in mouse embryonal carcinoma cell lines encode a protein with homology to fibroblast growth factors. EMBO J. 1988 Apr;7(4):1013–1022. [PMC free article] [PubMed]
  • Spence AM, Sheppard PC, Davie JR, Matuo Y, Nishi N, McKeehan WL, Dodd JG, Matusik RJ. Regulation of a bifunctional mRNA results in synthesis of secreted and nuclear probasin. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7843–7847. [PMC free article] [PubMed]
  • von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. [PMC free article] [PubMed]
  • Walter P, Lingappa VR. Mechanism of protein translocation across the endoplasmic reticulum membrane. Annu Rev Cell Biol. 1986;2:499–516. [PubMed]

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...