• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of embojLink to Publisher's site
EMBO J. Feb 15, 1994; 13(4): 906–913.
PMCID: PMC394890

Mutations in eukaryotic 18S ribosomal RNA affect translational fidelity and resistance to aminoglycoside antibiotics.


Mutations have been created in the Saccharomyces cerevisiae 18S rRNA gene that correspond to those known to be involved in the control of translational fidelity or antibiotic resistance in prokaryotes. Yeast strains, in which essentially all chromosomal rDNA repeats are deleted and all cellular rRNAs are encoded by plasmid, have been constructed that contain only mutant 18S rRNA. In Escherichia coli, a C-->U substitution at position 912 of the small subunit rRNA causes streptomycin resistance. Eukaryotes normally carry U at the corresponding position and are naturally resistant to streptomycin. We show that a U-->C transition (rdn-4) at this position of the yeast 18S rRNA gene decreases resistance to streptomycin. The rdn-4 mutation also increases resistance to paromomycin and G-418, and inhibits nonsense suppression induced by paromomycin. The same phenotypes, as well as a slow growth phenotype, are also associated with rdn-2, whose prokaryotic counterpart, 517 G-->A, manifests itself as a suppressor rather than an antisuppressor. Neither rdn-2- nor rdn-4-related phenotypes could be detected in the presence of the normal level of wild-type rDNA repeats. Our data demonstrate that eukaryotic rRNA is involved in the control of translational fidelity, and indicate that rRNA features important for interactions with aminoglycosides have been conserved throughout evolution.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.6M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Alksne LE, Anthony RA, Liebman SW, Warner JR. An accuracy center in the ribosome conserved over 2 billion years. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9538–9541. [PMC free article] [PubMed]
  • Bayliss FT, Vinopal RT. Selection of ribosomal mutants by antibiotic suppression in yeast. Science. 1971 Dec 24;174(4016):1339–1341. [PubMed]
  • Dontsova O, Dokudovskaya S, Kopylov A, Bogdanov A, Rinke-Appel J, Jünke N, Brimacombe R. Three widely separated positions in the 16S RNA lie in or close to the ribosomal decoding region; a site-directed cross-linking study with mRNA analogues. EMBO J. 1992 Aug;11(8):3105–3116. [PMC free article] [PubMed]
  • Firoozan M, Grant CM, Duarte JA, Tuite MF. Quantitation of readthrough of termination codons in yeast using a novel gene fusion assay. Yeast. 1991 Feb;7(2):173–183. [PubMed]
  • Gauthier A, Turmel M, Lemieux C. Mapping of chloroplast mutations conferring resistance to antibiotics in Chlamydomonas: evidence for a novel site of streptomycin resistance in the small subunit rRNA. Mol Gen Genet. 1988 Oct;214(2):192–197. [PubMed]
  • Gietz RD, Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 1988 Dec 30;74(2):527–534. [PubMed]
  • Gutell RR. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures. Nucleic Acids Res. 1993 Jul 1;21(13):3051–3054. [PMC free article] [PubMed]
  • Hummel H, Böck A. 23S ribosomal RNA mutations in halobacteria conferring resistance to the anti-80S ribosome targeted antibiotic anisomycin. Nucleic Acids Res. 1987 Mar 25;15(6):2431–2443. [PMC free article] [PubMed]
  • IERUSALIMSKII ND, SHEVCHENKO LA, GRISHANKOVA EV. [Change of some physiological requirements of yeasts as a result of adaptation to streptomycin]. Mikrobiologiia. 1963 Jan-Feb;32:13–16. [PubMed]
  • Inge-Vechtomov SG, Tikhodeev ON, Karpova TS. Selektivnye sistemy dlia polucheniia retsessivnykh ribosomnykh supressorov u drozhzhei sakharomitsetov. Genetika. 1988 Jul;24(7):1159–1165. [PubMed]
  • Jain VK, Magrath IT. A chemiluminescent assay for quantitation of beta-galactosidase in the femtogram range: application to quantitation of beta-galactosidase in lacZ-transfected cells. Anal Biochem. 1991 Nov 15;199(1):119–124. [PubMed]
  • Jones JS, Prakash L. Yeast Saccharomyces cerevisiae selectable markers in pUC18 polylinkers. Yeast. 1990 Sep-Oct;6(5):363–366. [PubMed]
  • Kulkens T, van der Sande CA, Dekker AF, van Heerikhuizen H, Planta RJ. A system to study transcription by yeast RNA polymerase I within the chromosomal context: functional analysis of the ribosomal DNA enhancer and the RBP1/REB1 binding sites. EMBO J. 1992 Dec;11(12):4665–4674. [PMC free article] [PubMed]
  • Kunkel TA, Roberts JD, Zakour RA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. [PubMed]
  • Leclerc D, Melançon P, Brakier-Gingras L. Mutations in the 915 region of Escherichia coli 16S ribosomal RNA reduce the binding of streptomycin to the ribosome. Nucleic Acids Res. 1991 Jul 25;19(14):3973–3977. [PMC free article] [PubMed]
  • Leclerc D, Melançon P, Brakier-Gingras L. The interaction between streptomycin and ribosomal RNA. Biochimie. 1991 Dec;73(12):1431–1438. [PubMed]
  • Melançon P, Lemieux C, Brakier-Gingras L. A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin. Nucleic Acids Res. 1988 Oct 25;16(20):9631–9639. [PMC free article] [PubMed]
  • Moazed D, Noller HF. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature. 1987 Jun 4;327(6121):389–394. [PubMed]
  • Montandon PE, Nicolas P, Schürmann P, Stutz E. Streptomycin-resistance of Euglena gracilis chloroplasts: identification of a point mutation in the 16S rRNA gene in an invariant position. Nucleic Acids Res. 1985 Jun 25;13(12):4299–4310. [PMC free article] [PubMed]
  • Montandon PE, Wagner R, Stutz E. E. coli ribosomes with a C912 to U base change in the 16S rRNA are streptomycin resistant. EMBO J. 1986 Dec 20;5(13):3705–3708. [PMC free article] [PubMed]
  • Murgola EJ, Hijazi KA, Göringer HU, Dahlberg AE. Mutant 16S ribosomal RNA: a codon-specific translational suppressor. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4162–4165. [PMC free article] [PubMed]
  • Musters W, Venema J, van der Linden G, van Heerikhuizen H, Klootwijk J, Planta RJ. A system for the analysis of yeast ribosomal DNA mutations. Mol Cell Biol. 1989 Feb;9(2):551–559. [PMC free article] [PubMed]
  • Neefs JM, Van de Peer Y, Hendriks L, De Wachter R. Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res. 1990 Apr 25;18 (Suppl):2237–2317. [PMC free article] [PubMed]
  • Neefs JM, Van de Peer Y, De Rijk P, Goris A, De Wachter R. Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res. 1991 Apr 25;19 (Suppl):1987–2015. [PMC free article] [PubMed]
  • Nogi Y, Yano R, Nomura M. Synthesis of large rRNAs by RNA polymerase II in mutants of Saccharomyces cerevisiae defective in RNA polymerase I. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3962–3966. [PMC free article] [PubMed]
  • Noller HF. Ribosomal RNA and translation. Annu Rev Biochem. 1991;60:191–227. [PubMed]
  • Noller HF. tRNA-rRNA interactions and peptidyl transferase. FASEB J. 1993 Jan;7(1):87–89. [PubMed]
  • Noller HF, Hoffarth V, Zimniak L. Unusual resistance of peptidyl transferase to protein extraction procedures. Science. 1992 Jun 5;256(5062):1416–1419. [PubMed]
  • O'Connor M, De Stasio EA, Dahlberg AE. Interaction between 16S ribosomal RNA and ribosomal protein S12: differential effects of paromomycin and streptomycin. Biochimie. 1991 Dec;73(12):1493–1500. [PubMed]
  • O'Connor M, Göringer HU, Dahlberg AE. A ribosomal ambiguity mutation in the 530 loop of E. coli 16S rRNA. Nucleic Acids Res. 1992 Aug 25;20(16):4221–4227. [PMC free article] [PubMed]
  • Palmer E, Wilhelm JM, Sherman F. Phenotypic suppression of nonsense mutants in yeast by aminoglycoside antibiotics. Nature. 1979 Jan 11;277(5692):148–150. [PubMed]
  • Parent SA, Fenimore CM, Bostian KA. Vector systems for the expression, analysis and cloning of DNA sequences in S. cerevisiae. Yeast. 1985 Dec;1(2):83–138. [PubMed]
  • Pel HJ, Maat C, Rep M, Grivell LA. The yeast nuclear gene MRF1 encodes a mitochondrial peptide chain release factor and cures several mitochondrial RNA splicing defects. Nucleic Acids Res. 1992 Dec 11;20(23):6339–6346. [PMC free article] [PubMed]
  • Powers T, Noller HF. A functional pseudoknot in 16S ribosomal RNA. EMBO J. 1991 Aug;10(8):2203–2214. [PMC free article] [PubMed]
  • Raué HA, Planta RJ. Ribosome biogenesis in yeast. Prog Nucleic Acid Res Mol Biol. 1991;41:89–129. [PubMed]
  • Schmitt ME, Brown TA, Trumpower BL. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 1990 May 25;18(10):3091–3092. [PMC free article] [PubMed]
  • Shen ZH, Fox TD. Substitution of an invariant nucleotide at the base of the highly conserved '530-loop' of 15S rRNA causes suppression of yeast mitochondrial ochre mutations. Nucleic Acids Res. 1989 Jun 26;17(12):4535–4539. [PMC free article] [PubMed]
  • Sigmund CD, Ettayebi M, Borden A, Morgan EA. Antibiotic resistance mutations in ribosomal RNA genes of Escherichia coli. Methods Enzymol. 1988;164:673–690. [PubMed]
  • Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. [PMC free article] [PubMed]
  • Singh A, Ursic D, Davies J. Phenotypic suppression and misreading Saccharomyces cerevisiae. Nature. 1979 Jan 11;277(5692):146–148. [PubMed]
  • Spangler EA, Blackburn EH. The nucleotide sequence of the 17S ribosomal RNA gene of Tetrahymena thermophila and the identification of point mutations resulting in resistance to the antibiotics paromomycin and hygromycin. J Biol Chem. 1985 May 25;260(10):6334–6340. [PubMed]
  • Vijgenboom E, Vink T, Kraal B, Bosch L. Mutants of the elongation factor EF-Tu, a new class of nonsense suppressors. EMBO J. 1985 Apr;4(4):1049–1052. [PMC free article] [PubMed]
  • Vincent A, Liebman SW. The yeast omnipotent suppressor SUP46 encodes a ribosomal protein which is a functional and structural homolog of the Escherichia coli S4 ram protein. Genetics. 1992 Oct;132(2):375–386. [PMC free article] [PubMed]
  • Vincent A, Petes TD. Mitotic and meiotic gene conversion of Ty elements and other insertions in Saccharomyces cerevisiae. Genetics. 1989 Aug;122(4):759–772. [PMC free article] [PubMed]
  • Winston F, Chumley F, Fink GR. Eviction and transplacement of mutant genes in yeast. Methods Enzymol. 1983;101:211–228. [PubMed]

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...