Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Apr 1983; 80(8): 2258–2262.
PMCID: PMC393798

pH and the recycling of transferrin during receptor-mediated endocytosis.

Abstract

At pH 5.4 apotransferrin (iron-free transferrin) binds to cell-surface transferrin receptors to the same extent and with the same affinity as does diferric transferrin at pH 7.0. Apotransferrin is quickly dissociated from its receptor when the pH is raised to 7.0. These and other results strongly support a simple model that explains the cycling of transferrin during a single cycle of receptor-mediated endocytosis. Diferric transferrin binds to cell-surface receptors, and the transferrin-receptor complex is endocytosed. The pH of the endocytic vesicle is lowered to 5.5 or below; this causes dissociation of iron from the transferrin-receptor complex, but apotransferrin remains bound to its receptor. The iron remains within the cell, and the apotransferrin-receptor complex is recycled to the cell surface. Upon encountering the neutral pH of the medium, apotransferrin is dissociated from the cell.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (963K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Goldstein JL, Anderson RG, Brown MS. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979 Jun 21;279(5715):679–685. [PubMed]
  • Pastan IH, Willingham MC. Receptor-mediated endocytosis of hormones in cultured cells. Annu Rev Physiol. 1981;43:239–250. [PubMed]
  • Ashwell G, Morell AG. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol Relat Areas Mol Biol. 1974;41(0):99–128. [PubMed]
  • Bridges K, Harford J, Ashwell G, Klausner RD. Fate of receptor and ligand during endocytosis of asialoglycoproteins by isolated hepatocytes. Proc Natl Acad Sci U S A. 1982 Jan;79(2):350–354. [PMC free article] [PubMed]
  • Tsai JS, Seeman M. In vitro characterization of the mechanism of insulin degradation and the effect of chloroquine. Biochim Biophys Acta. 1981 Mar 18;673(3):259–269. [PubMed]
  • Carpenter G, Cohen S. 125I-labeled human epidermal growth factor. Binding, internalization, and degradation in human fibroblasts. J Cell Biol. 1976 Oct;71(1):159–171. [PMC free article] [PubMed]
  • Goldstein JL, Brown MS. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem. 1977;46:897–930. [PubMed]
  • Ascoli M, Puett D. Degradation of receptor-bound human choriogonadotropin by murine Leydig tumor cells. J Biol Chem. 1978 Jul 25;253(14):4892–4899. [PubMed]
  • Willingham MC, Pastan I. The receptosome: an intermediate organelle of receptor mediated endocytosis in cultured fibroblasts. Cell. 1980 Aug;21(1):67–77. [PubMed]
  • Wall DA, Wilson G, Hubbard AL. The galactose-specific recognition system of mammalian liver: the route of ligand internalization in rat hepatocytes. Cell. 1980 Aug;21(1):79–93. [PubMed]
  • Pastan IH, Willingham MC. Journey to the center of the cell: role of the receptosome. Science. 1981 Oct 30;214(4520):504–509. [PubMed]
  • Tycko B, Maxfield FR. Rapid acidification of endocytic vesicles containing alpha 2-macroglobulin. Cell. 1982 Mar;28(3):643–651. [PubMed]
  • Geuze HJ, Slot JW, Strous GJ, Lodish HF, Schwartz AL. Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double-label immunoelectron microscopy during receptor-mediated endocytosis. Cell. 1983 Jan;32(1):277–287. [PubMed]
  • Krupp M, Lane MD. On the mechanism of ligand-induced down-regulation of insulin receptor level in the liver cell. J Biol Chem. 1981 Feb 25;256(4):1689–1694. [PubMed]
  • Fehlmann M, Carpentier JL, Van Obberghen E, Freychet P, Thamm P, Saunders D, Brandenburg D, Orci L. Internalized insulin receptors are recycled to the cell surface in rat hepatocytes. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5921–5925. [PMC free article] [PubMed]
  • Van Leuven F, Cassiman JJ, Van Den Berghe H. Primary amines inhibit recycling of alpha 2M receptors in fibroblasts. Cell. 1980 May;20(1):37–43. [PubMed]
  • Stahl P, Schlesinger PH, Sigardson E, Rodman JS, Lee YC. Receptor-mediated pinocytosis of mannose glycoconjugates by macrophages: characterization and evidence for receptor recycling. Cell. 1980 Jan;19(1):207–215. [PubMed]
  • Gonzalez-Noriega A, Grubb JH, Talkad V, Sly WS. Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling. J Cell Biol. 1980 Jun;85(3):839–852. [PMC free article] [PubMed]
  • Brown MS, Anderson RG, Basu SK, Goldstein JL. Recycling of cell-surface receptors: observations from the LDL receptor system. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):713–721. [PubMed]
  • JANDL JH, KATZ JH. The plasma-to-cell cycle of transferrin. J Clin Invest. 1963 Mar;42:314–326. [PMC free article] [PubMed]
  • Sullivan AL, Grasso JA, Weintraub LR. Micropinocytosis of transferrin by developing red cells: an electron-microscopic study utilizing ferritin-conjugated transferrin and ferritin-conjugated antibodies to transferrin. Blood. 1976 Jan;47(1):133–143. [PubMed]
  • Morgan EH, Huebers H, Finch CA. Differences between the binding sites for iron binding and release in human and rat transferrin. Blood. 1978 Dec;52(6):1219–1228. [PubMed]
  • Octave JN, Schneider YJ, Crichton RR, Trouet A. Transferrin uptake by cultured rat embryo fibroblasts. The influence of temperature and incubation time, subcellular distribution and short-term kinetic studies. Eur J Biochem. 1981 Apr;115(3):611–618. [PubMed]
  • Karin M, Mintz B. Receptor-mediated endocytosis of transferrin in developmentally totipotent mouse teratocarcinoma stem cells. J Biol Chem. 1981 Apr 10;256(7):3245–3252. [PubMed]
  • Octave JN, Schneider YJ, Hoffmann P, Trouet A, Crichton RR. Transferrin uptake by cultured rat embryo fibroblasts. The influence of lysosomotropic agents, iron chelators and colchicine on the uptake of iron and transferrin. Eur J Biochem. 1982 Apr 1;123(2):235–240. [PubMed]
  • van Renswoude J, Bridges KR, Harford JB, Klausner RD. Receptor-mediated endocytosis of transferrin and the uptake of fe in K562 cells: identification of a nonlysosomal acidic compartment. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6186–6190. [PMC free article] [PubMed]
  • Knowles BB, Howe CC, Aden DP. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980 Jul 25;209(4455):497–499. [PubMed]
  • Schwartz AL, Fridovich SE, Knowles BB, Lodish HF. Characterization of the asialoglycoprotein receptor in a continuous hepatoma line. J Biol Chem. 1981 Sep 10;256(17):8878–8881. [PubMed]
  • Ciechanover A, Schwartz AL, Lodish HF. The asialoglycoprotein receptor internalizes and recycles independently of the transferrin and insulin receptors. Cell. 1983 Jan;32(1):267–275. [PubMed]
  • LOWRY OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed]
  • Princiotto JV, Zapolski EJ. Difference between the two iron-binding sites of transferrin. Nature. 1975 May 1;255(5503):87–88. [PubMed]
  • Lestas AN. The effect of pH upon human transferrin: selective labelling of the two iron-binding sites. Br J Haematol. 1976 Mar;32(3):341–350. [PubMed]
  • Posner BI, Josefsberg Z, Bergeron JJ. Intracellular polypeptide hormone receptors. Characterization of insulin binding sites in Golgi fractions from the liver of female rats. J Biol Chem. 1978 Jun 10;253(11):4067–4073. [PubMed]
  • Basu SK, Goldstein JL, Brown MS. Characterization of the low density lipoprotein receptor in membranes prepared from human fibroblasts. J Biol Chem. 1978 Jun 10;253(11):3852–3856. [PubMed]
  • Ward JH, Kushner JP, Kaplan J. Regulation of HeLa cell transferrin receptors. J Biol Chem. 1982 Sep 10;257(17):10317–10323. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...