• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Jan 1983; 80(1): 305–309.
PMCID: PMC393362

Thermodynamic efficiency of microbial growth is low but optimal for maximal growth rate

Abstract

Thermodynamic efficiency of microbial growth on substrates that are more oxidized than biomass approaches 24%. This is the theoretical value for a linear energy converter optimized for maximal output flow at optimal efficiency. For growth on substrates more reduced than biomass, thermodynamic efficiencies correspond to those predicted for optimization to maximal growth rate (or yield) only.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • ROSENBERGER RF, ELSDEN SR. The yields of Streptococcus faecalis grown in continuous culture. J Gen Microbiol. 1960 Jun;22:726–739. [PubMed]
  • Thauer RK, Jungermann K, Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977 Mar;41(1):100–180. [PMC free article] [PubMed]
  • BAUCHOP T, ELSDEN SR. The growth of micro-organisms in relation to their energy supply. J Gen Microbiol. 1960 Dec;23:457–469. [PubMed]
  • Forrest WW, Walker DJ. The generation and utilization of energy during growth. Adv Microb Physiol. 1971;5:213–274. [PubMed]
  • Stouthamer AH. A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie Van Leeuwenhoek. 1973;39(3):545–565. [PubMed]
  • DAWES EA, RIBBONS DW. SOME ASPECTS OF THE ENDOGENOUS METABOLISM OF BACTERIA. Bacteriol Rev. 1964 Jun;28:126–149. [PMC free article] [PubMed]
  • Pirt SJ. The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B Biol Sci. 1965 Oct 12;163(991):224–231. [PubMed]
  • Neijssel OM, Tempest DW. The regulation of carbohydrate metabolism in Klebsiella aerogenes NCTC 418 organisms, growing in chemostat culture. Arch Microbiol. 1975 Dec 31;106(3):251–258. [PubMed]
  • Neijssel OM, Tempest DW. Bioenergetic aspects of aerobic growth of Klebsiella aerogenes NCTC 418 in carbon-limited and carbon-sufficient chemostat culture. Arch Microbiol. 1976 Mar 19;107(2):215–221. [PubMed]
  • Light PA, Garland PB. A comparison of mitochondria from Torulopsis utilis grown in continuous culture with glycerol, iron, ammonium, magnesium or phosphate as the growth-limiting nutrient. Biochem J. 1971 Aug;124(1):123–134. [PMC free article] [PubMed]
  • de Vries W, Kapteijn WM, van der Beek EG, Stouthamer AH. Molar growth yields and fermentation balances of Lactobacillus casei L3 in batch cultures and in continuous cultures. J Gen Microbiol. 1970 Nov;63(3):333–345. [PubMed]
  • Westerhoff HV, Lolkema JS, Otto R, Hellingwerf KJ. Thermodynamics of growth. Non-equilibrium thermodynamics of bacterial growth. The phenomenological and the mosaic approach. Biochim Biophys Acta. 1982 Dec 31;683(3-4):181–220. [PubMed]
  • Stucki JW. The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation. Eur J Biochem. 1980 Aug;109(1):269–283. [PubMed]
  • Minkevich IG, Eroshin VK. Productivity and heat generation of fermentation under oxygen limitation. Folia Microbiol (Praha) 1973;18(5):376–385. [PubMed]
  • Payne WJ. Energy yields and growth of heterotrophs. Annu Rev Microbiol. 1970;24:17–52. [PubMed]
  • van Verseveld HW, Stouthamer AH. Growth yields and the efficiency of oxidative phosphorylation during autotrophic growth of Paracoccus denitrificans on methanol and formate. Arch Microbiol. 1978 Jul;118(1):21–26. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • PubMed
    PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...