• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Jun 25, 1996; 93(13): 6504–6509.

An abundant cell-surface polypeptide is required for swimming by the nonflagellated marine cyanobacterium Synechococcus.


Certain marine unicellular cyanobacteria of the genus Synechococcus exhibit a unique and mysterious form of motility characterized by the ability to swim in liquid in the absence of flagella. An abundant cell-surface-associated polypeptide that is required for swimming motility by Synechococcus sp. strain WH8102 has been identified, and the gene encoding it, swmA, has been cloned and sequenced. The predicted SwmA protein contains a number of Ca2+-binding motifs as well as several potential N-glycosylation sites. Insertional inactivation of swmA in Synechococcus sp. strain WH8102 results in a loss of the ability to translocate, although the mutant strain, Swm-1, generates torque. This suggests that SwmA functions in the generation of thrust.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.5M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Waterbury JB, Willey JM, Franks DG, Valois FW, Watson SW. A cyanobacterium capable of swimming motility. Science. 1985 Oct 4;230(4721):74–76. [PubMed]
  • Hazelbauer GL, Berg HC, Matsumura P. Bacterial motility and signal transduction. Cell. 1993 Apr 9;73(1):15–22. [PubMed]
  • Berg HC, Anderson RA. Bacteria swim by rotating their flagellar filaments. Nature. 1973 Oct 19;245(5425):380–382. [PubMed]
  • Silverman M, Simon M. Flagellar rotation and the mechanism of bacterial motility. Nature. 1974 May 3;249(452):73–74. [PubMed]
  • Pitta TP, Berg HC. Self-electrophoresis is not the mechanism for motility in swimming cyanobacteria. J Bacteriol. 1995 Oct;177(19):5701–5703. [PMC free article] [PubMed]
  • Resch CM, Gibson J. Isolation of the carotenoid-containing cell wall of three unicellular cyanobacteria. J Bacteriol. 1983 Jul;155(1):345–350. [PMC free article] [PubMed]
  • Brahamsha B, Haselkorn R. Isolation and characterization of the gene encoding the principal sigma factor of the vegetative cell RNA polymerase from the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol. 1991 Apr;173(8):2442–2450. [PMC free article] [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Schägger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. [PubMed]
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. [PubMed]
  • Bairoch A, Bucher P. PROSITE: recent developments. Nucleic Acids Res. 1994 Sep;22(17):3583–3589. [PMC free article] [PubMed]
  • Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. [PubMed]
  • Gilchrist A, Fisher JA, Smit J. Nucleotide sequence analysis of the gene encoding the Caulobacter crescentus paracrystalline surface layer protein. Can J Microbiol. 1992 Mar;38(3):193–202. [PubMed]
  • Ertesvåg H, Doseth B, Larsen B, Skjåk-Braek G, Valla S. Cloning and expression of an Azotobacter vinelandii mannuronan C-5-epimerase gene. J Bacteriol. 1994 May;176(10):2846–2853. [PMC free article] [PubMed]
  • Economou A, Hamilton WD, Johnston AW, Downie JA. The Rhizobium nodulation gene nodO encodes a Ca2(+)-binding protein that is exported without N-terminal cleavage and is homologous to haemolysin and related proteins. EMBO J. 1990 Feb;9(2):349–354. [PMC free article] [PubMed]
  • Glaser P, Ladant D, Sezer O, Pichot F, Ullmann A, Danchin A. The calmodulin-sensitive adenylate cyclase of Bordetella pertussis: cloning and expression in Escherichia coli. Mol Microbiol. 1988 Jan;2(1):19–30. [PubMed]
  • Baumann U, Wu S, Flaherty KM, McKay DB. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J. 1993 Sep;12(9):3357–3364. [PMC free article] [PubMed]
  • Pugsley AP. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev. 1993 Mar;57(1):50–108. [PMC free article] [PubMed]
  • Walker SG, Karunaratne DN, Ravenscroft N, Smit J. Characterization of mutants of Caulobacter crescentus defective in surface attachment of the paracrystalline surface layer. J Bacteriol. 1994 Oct;176(20):6312–6323. [PMC free article] [PubMed]
  • Messner P, Sleytr UB. Crystalline bacterial cell-surface layers. Adv Microb Physiol. 1992;33:213–275. [PubMed]
  • Brahamsha B. A genetic manipulation system for oceanic cyanobacteria of the genus Synechococcus. Appl Environ Microbiol. 1996 May;62(5):1747–1751. [PMC free article] [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...