Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Aug 1985; 82(15): 4881–4885.
PMCID: PMC390461

Inhibition of phosphoribosylaminoimidazolecarboxamide transformylase by methotrexate and dihydrofolic acid polyglutamates.


We report the enhanced inhibitory potency of methotrexate (MTX) polyglutamates and dihydrofolate pentaglutamate on the catalytic activity of phosphoribosylaminoimidazolecarboxamide (AICAR) transformylase purified from MCF-7 human breast cancer cells. In the present work, MTX (4-amino-10-methylpteroylglutamic acid) and dihydrofolate, both monoglutamates, were found to be weak competitive inhibitors of AICAR transformylase with Kis of 143 and 63 microM, respectively, and their inhibitory capacity was largely unaffected by the glutamated state of the folate cosubstrate. In contrast, MTX polyglutamates were found to be potent competitive inhibitors, with an approximately 10-fold increase in inhibitory potency with the addition of each glutamate group up to four (i.e., the pentaglutamate derivative). MTX tetra-and pentaglutamates were the most potent, with equivalent Kis of 5.6 X 10(-8) M or 2500-fold more potent than MTX. Dihydrofolate pentaglutamate was as potent an inhibitor as MTX pentaglutamate, with a Ki of 4.3 X 10(-8) M. The potent inhibitory effects demonstrated by the polyglutamate compounds when tested against the folate monoglutamate substrate were sharply curtailed when folate pentaglutamate was used as the substrate. MTX and dihydrofolate pentaglutamates were only 7- and 25-fold more potent than their monoglutamate counterparts under these conditions. A model depicting these complex interactions is postulated. These findings have significant implications regarding the mechanism of action of MTX.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Jolivet J, Cowan KH, Curt GA, Clendeninn NJ, Chabner BA. The pharmacology and clinical use of methotrexate. N Engl J Med. 1983 Nov 3;309(18):1094–1104. [PubMed]
  • McGuire JJ, Bertino JR. Enzymatic synthesis and function of folylpolyglutamates. Mol Cell Biochem. 1981 Aug 11;38(Spec No)(Pt 1):19–48. [PubMed]
  • Rosenblatt DS, Whitehead VM, Vera N, Pottier A, Dupont M, Vuchich MJ. Prolonged inhibition of DNA synthesis associated with the accumulation of methotrexate polyglutamates by cultured human cells. Mol Pharmacol. 1978 Nov;14(6):1143–1147. [PubMed]
  • Poser RG, Sirotnak FM, Chello PL. Differential synthesis of methotrexate polyglutamates in normal proliferative and neoplastic mouse tissues in vivo. Cancer Res. 1981 Nov;41(11 Pt 1):4441–4446. [PubMed]
  • Gewirtz DA, White JC, Randolph JK, Goldman ID. Transport, binding, and polyglutamation of methotrexate in freshly isolated rat hepatocytes. Cancer Res. 1980 Mar;40(3):573–578. [PubMed]
  • Galivan J. Evidence for the cytotoxic activity of polyglutamate derivatives of methotrexate. Mol Pharmacol. 1980 Jan;17(1):105–110. [PubMed]
  • Schilsky RL, Bailey BD, Chabner BA. Methotrexate polyglutamate synthesis by cultured human breast cancer cells. Proc Natl Acad Sci U S A. 1980 May;77(5):2919–2922. [PMC free article] [PubMed]
  • Fry DW, Yalowich JC, Goldman ID. Rapid formation of poly-gamma-glutamyl derivatives of methotrexate and their association with dihydrofolate reductase as assessed by high pressure liquid chromatography in the Ehrlich ascites tumor cell in vitro. J Biol Chem. 1982 Feb 25;257(4):1890–1896. [PubMed]
  • Jolivet J, Schilsky RL, Bailey BD, Drake JC, Chabner BA. Synthesis, retention, and biological activity of methotrexate polyglutamates in cultured human breast cancer cells. J Clin Invest. 1982 Aug;70(2):351–360. [PMC free article] [PubMed]
  • Jolivet J, Chabner BA. Intracellular pharmacokinetics of methotrexate polyglutamates in human breast cancer cells. Selective retention and less dissociable binding of 4-NH2-10-CH3-pteroylglutamate4 and 4-NH2-10-CH3-pteroylglutamate5 to dihydrofolate reductase. J Clin Invest. 1983 Sep;72(3):773–778. [PMC free article] [PubMed]
  • White JC. Reversal of methotrexate binding to dihydrofolate reductase by dihydrofolate. Studies with pure enzyme and computer modeling using network thermodynamics. J Biol Chem. 1979 Nov 10;254(21):10889–10895. [PubMed]
  • Nair MG, Baugh CM. Synthesis and biological evaluation of poly-gamma-glutamyl derivatives of methotrexate. Biochemistry. 1973 Sep 25;12(20):3923–3927. [PubMed]
  • Coward JK, Parameswaran KN, Cashmore AR, Bertino JR. 7,8-Dihydropteroyl oligo-gamma-L-glutamates: synthesis and kinetic studies with purified dihydrofolate reductase from mammalian sources. Biochemistry. 1974 Sep 10;13(19):3899–3903. [PubMed]
  • MATHEWS CK, HUENNEKENS FM. Enzymic preparation of the 1,L-diastereoisomer of tetrahydrofolic acid. J Biol Chem. 1960 Nov;235:3304–3308. [PubMed]
  • Moran RG, Colman PD. A simple procedure for the synthesis of high specific activity tritiated (6S)-5-formyltetrahydrofolate. Anal Biochem. 1982 May 1;122(1):70–78. [PubMed]
  • Weber K, Pringle JR, Osborn M. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol. 1972;26:3–27. [PubMed]
  • Black SL, Black MJ, Mangum JH. A rapid assay for 5-amino-4-imidazolecarboxamide ribotide transformylase. Anal Biochem. 1978 Oct 1;90(1):397–401. [PubMed]
  • Munson PJ, Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. [PubMed]
  • Smith GK, Mueller WT, Wasserman GF, Taylor WD, Benkovic SJ. Characterization of the enzyme complex involving the folate-requiring enzymes of de novo purine biosynthesis. Biochemistry. 1980 Sep 2;19(18):4313–4321. [PubMed]
  • Caperelli CA, Benkovic PA, Chettur G, Benkovic SJ. Purification of a complex catalyzing folate cofactor synthesis and transformylation in de novo purine biosynthesis. J Biol Chem. 1980 Mar 10;255(5):1885–1890. [PubMed]
  • Mueller WT, Benkovic SJ. On the purification and mechanism of action of 5-aminoimidazole-4-carboxamide-ribonucleotide transformylase from chicken liver. Biochemistry. 1981 Jan 20;20(2):337–344. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem Compound links
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...