Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. 1996 Jul 9; 93(14): 7247–7251.

Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay.


Anti-viral drug treatment of human immunodeficiency virus type I (HIV-1) and hepatitis B virus (HBV) infections causes rapid reduction in plasma virus load. Viral decline occurs in several phases and provides information on important kinetic constants of virus replication in vivo and pharmacodynamical properties. We develop a mathematical model that takes into account the intracellular phase of the viral life-cycle, defined as the time between infection of a cell and production of new virus particles. We derive analytic solutions for the dynamics following treatment with reverse transcriptase inhibitors, protease inhibitors, or a combination of both. For HIV-1, our results show that the phase of rapid decay in plasma virus (days 2-7) allows precise estimates for the turnover rate of productively infected cells. The initial quasi-stationary phase (days 0-1) and the transition phase (days 1-2) are explained by the combined effects of pharmacological and intracellular delays, the clearance of free virus particles, and the decay of infected cells. Reliable estimates of the first three quantities are not possible from data on virus load only; such estimates require additional measurements. In contrast with HIV-1, for HBV our model predicts that frequent early sampling of plasma virus will lead to reliable estimates of the free virus half-life and the pharmacological properties of the administered drug. On the other hand, for HBV the half-life of infected cells cannot be estimated from plasma virus decay.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA, Deutsch P, Lifson JD, Bonhoeffer S, Nowak MA, Hahn BH, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995 Jan 12;373(6510):117–122. [PubMed]
  • Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995 Jan 12;373(6510):123–126. [PubMed]
  • Coffin JM. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science. 1995 Jan 27;267(5197):483–489. [PubMed]
  • Nowak MA, Bonhoeffer S, Loveday C, Balfe P, Semple M, Kaye S, Tenant-Flowers M, Tedder R. HIV results in the frame. Results confirmed. Nature. 1995 May 18;375(6528):193–193. [PubMed]
  • Nowak MA, Bonhoeffer S, Hill AM, Boehme R, Thomas HC, McDade H. Viral dynamics in hepatitis B virus infection. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4398–4402. [PMC free article] [PubMed]
  • Larder BA, Darby G, Richman DD. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science. 1989 Mar 31;243(4899):1731–1734. [PubMed]
  • McLean AR, Nowak MA. Competition between zidovudine-sensitive and zidovudine-resistant strains of HIV. AIDS. 1992 Jan;6(1):71–79. [PubMed]
  • Schuurman R, Nijhuis M, van Leeuwen R, Schipper P, de Jong D, Collis P, Danner SA, Mulder J, Loveday C, Christopherson C, et al. Rapid changes in human immunodeficiency virus type 1 RNA load and appearance of drug-resistant virus populations in persons treated with lamivudine (3TC). J Infect Dis. 1995 Jun;171(6):1411–1419. [PubMed]
  • Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science. 1996 Mar 15;271(5255):1582–1586. [PubMed]
  • Winslow DL, Otto MJ. HIV protease inhibitors. AIDS. 1995;9 (Suppl A):S183–S192. [PubMed]
  • Marchuk GI, Petrov RV, Romanyukha AA, Bocharov GA. Mathematical model of antiviral immune response. I. Data analysis, generalized picture construction and parameters evaluation for hepatitis B. J Theor Biol. 1991 Jul 7;151(1):1–40. [PubMed]
  • Nowak MA, Anderson RM, McLean AR, Wolfs TF, Goudsmit J, May RM. Antigenic diversity thresholds and the development of AIDS. Science. 1991 Nov 15;254(5034):963–969. [PubMed]
  • Payne RJ, Nowak MA, Blumberg BS. A cellular model to explain the pathogenesis of infection by the hepatitis B virus. Math Biosci. 1994 Sep;123(1):25–58. [PubMed]
  • McLean AR, Nowak MA. Models of interactions between HIV and other pathogens. J Theor Biol. 1992 Mar 7;155(1):69–86. [PubMed]
  • Perelson AS, Kirschner DE, De Boer R. Dynamics of HIV infection of CD4+ T cells. Math Biosci. 1993 Mar;114(1):81–125. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...