• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Jul 23, 1996; 93(15): 7512–7517.
PMCID: PMC38776

Intermolecular disulfide bonds stabilize VirB7 homodimers and VirB7/VirB9 heterodimers during biogenesis of the Agrobacterium tumefaciens T-complex transport apparatus.

Abstract

The Agrobacterium tumefaciens VirB7 lipoprotein contributes to the stabilization of VirB proteins during biogenesis of the putative T-complex transport apparatus. Here, we report that stabilization of VirB7 itself is correlated with its ability to form disulfide cross-linked homodimers via a reactive Cys-24 residue. Three types of beta-mercaptoethanol-dissociable complexes were visualized with VirB7 and/or a VirB7::PhoA41 fusion protein: (i) a 9-kDa complex corresponding in size to a VirB7 homodimer, (ii) a 54-kDa complex corresponding in size to a VirB7/VirB7::PhoA41 mixed dimer, and (iii) a 102-kDa complex corresponding to a VirB7::PhoA41 homodimer. A VirB7C24S mutant protein was immunologically undetectable, whereas the corresponding VirB7C24S::PhoA41 derivative accumulated to detectable levels but failed to form dissociable homodimers or mixed dimers with wild-type VirB7. We further report that VirB7-dependent stabilization of VirB9 is correlated with the ability of these two proteins to dimerize via formation of a disulfide bridge between reactive Cys-24 and Cys-262 residues, respectively. Two types of dissociable complexes were visualized: (i) a 36-kDa complex corresponding in size to a VirB7/VirB9 heterodimer and (ii) an 84-kDa complex corresponding in size to a VirB7/VirB9::PhoA293 heterodimer. A VirB9C262S mutant protein was immunologically undetectable, whereas the corresponding VirB9C262S::PhoA293 derivative accumulated to detectable levels but failed to form dissociable heterodimers with wild-type VirB7. Taken together, these results support a model in which the formation of disulfide cross-linked VirB7 dimers represent critical early steps in the biogenesis of the T-complex transport apparatus.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Zupan JR, Zambryski P. Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol. 1995 Apr;107(4):1041–1047. [PMC free article] [PubMed]
  • Winans SC, Burns DL, Christie PJ. Adaptation of a conjugal transfer system for the export of pathogenic macromolecules. Trends Microbiol. 1996 Feb;4(2):64–68. [PubMed]
  • Lessl M, Lanka E. Common mechanisms in bacterial conjugation and Ti-mediated T-DNA transfer to plant cells. Cell. 1994 May 6;77(3):321–324. [PubMed]
  • Berger BR, Christie PJ. Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes. J Bacteriol. 1994 Jun;176(12):3646–3660. [PMC free article] [PubMed]
  • Pohlman RF, Genetti HD, Winans SC. Common ancestry between IncN conjugal transfer genes and macromolecular export systems of plant and animal pathogens. Mol Microbiol. 1994 Nov;14(4):655–668. [PubMed]
  • Lessl M, Balzer D, Pansegrau W, Lanka E. Sequence similarities between the RP4 Tra2 and the Ti VirB region strongly support the conjugation model for T-DNA transfer. J Biol Chem. 1992 Oct 5;267(28):20471–20480. [PubMed]
  • Beijersbergen A, Dulk-Ras AD, Schilperoort RA, Hooykaas PJ. Conjugative Transfer by the Virulence System of Agrobacterium tumefaciens. Science. 1992 May 29;256(5061):1324–1327. [PubMed]
  • Haase J, Lurz R, Grahn AM, Bamford DH, Lanka E. Bacterial conjugation mediated by plasmid RP4: RSF1010 mobilization, donor-specific phage propagation, and pilus production require the same Tra2 core components of a proposed DNA transport complex. J Bacteriol. 1995 Aug;177(16):4779–4791. [PMC free article] [PubMed]
  • Weiss AA, Johnson FD, Burns DL. Molecular characterization of an operon required for pertussis toxin secretion. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2970–2974. [PMC free article] [PubMed]
  • Fernandez D, Dang TA, Spudich GM, Zhou XR, Berger BR, Christie PJ. The Agrobacterium tumefaciens virB7 gene product, a proposed component of the T-complex transport apparatus, is a membrane-associated lipoprotein exposed at the periplasmic surface. J Bacteriol. 1996 Jun;178(11):3156–3167. [PMC free article] [PubMed]
  • Christie PJ, Ward JE, Jr, Gordon MP, Nester EW. A gene required for transfer of T-DNA to plants encodes an ATPase with autophosphorylating activity. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9677–9681. [PMC free article] [PubMed]
  • Jones AL, Shirasu K, Kado CI. The product of the virB4 gene of Agrobacterium tumefaciens promotes accumulation of VirB3 protein. J Bacteriol. 1994 Sep;176(17):5255–5261. [PMC free article] [PubMed]
  • Thorstenson YR, Kuldau GA, Zambryski PC. Subcellular localization of seven VirB proteins of Agrobacterium tumefaciens: implications for the formation of a T-DNA transport structure. J Bacteriol. 1993 Aug;175(16):5233–5241. [PMC free article] [PubMed]
  • Ward JE, Jr, Dale EM, Nester EW, Binns AN. Identification of a virB10 protein aggregate in the inner membrane of Agrobacterium tumefaciens. J Bacteriol. 1990 Sep;172(9):5200–5210. [PMC free article] [PubMed]
  • Shirasu K, Kado CI. Membrane location of the Ti plasmid VirB proteins involved in the biosynthesis of a pilin-like conjugative structure on Agrobacterium tumefaciens. FEMS Microbiol Lett. 1993 Aug 1;111(2-3):287–294. [PubMed]
  • Berger BR, Christie PJ. The Agrobacterium tumefaciens virB4 gene product is an essential virulence protein requiring an intact nucleoside triphosphate-binding domain. J Bacteriol. 1993 Mar;175(6):1723–1734. [PMC free article] [PubMed]
  • Fernandez D, Spudich GM, Zhou XR, Christie PJ. The Agrobacterium tumefaciens VirB7 lipoprotein is required for stabilization of VirB proteins during assembly of the T-complex transport apparatus. J Bacteriol. 1996 Jun;178(11):3168–3176. [PMC free article] [PubMed]
  • Garfinkel DJ, Simpson RB, Ream LW, White FF, Gordon MP, Nester EW. Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell. 1981 Nov;27(1 Pt 2):143–153. [PubMed]
  • Bai C, Elledge SJ. Gene identification using the yeast two-hybrid system. Methods Enzymol. 1996;273:331–347. [PubMed]
  • Ward JE, Jr, Dale EM, Christie PJ, Nester EW, Binns AN. Complementation analysis of Agrobacterium tumefaciens Ti plasmid virB genes by use of a vir promoter expression vector: virB9, virB10, and virB11 are essential virulence genes. J Bacteriol. 1990 Sep;172(9):5187–5199. [PMC free article] [PubMed]
  • Christie PJ, Ward JE, Winans SC, Nester EW. The Agrobacterium tumefaciens virE2 gene product is a single-stranded-DNA-binding protein that associates with T-DNA. J Bacteriol. 1988 Jun;170(6):2659–2667. [PMC free article] [PubMed]
  • Ward JE, Akiyoshi DE, Regier D, Datta A, Gordon MP, Nester EW. Characterization of the virB operon from an Agrobacterium tumefaciens Ti plasmid. J Biol Chem. 1988 Apr 25;263(12):5804–5814. [PubMed]
  • Ward JE, Akiyoshi DE, Regier D, Datta A, Gordon MP, Nester EW. Correction: characterization of the virB operon from Agrobacterium tumefaciens Ti plasmid. J Biol Chem. 1990 Mar 15;265(8):4768–4768. [PubMed]
  • Hayashi S, Wu HC. Lipoproteins in bacteria. J Bioenerg Biomembr. 1990 Jun;22(3):451–471. [PubMed]
  • Bardwell JC. Building bridges: disulphide bond formation in the cell. Mol Microbiol. 1994 Oct;14(2):199–205. [PubMed]
  • Yu J, Webb H, Hirst TR. A homologue of the Escherichia coli DsbA protein involved in disulphide bond formation is required for enterotoxin biogenesis in Vibrio cholerae. Mol Microbiol. 1992 Jul;6(14):1949–1958. [PubMed]
  • Dailey FE, Berg HC. Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1043–1047. [PMC free article] [PubMed]
  • Peek JA, Taylor RK. Characterization of a periplasmic thiol:disulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6210–6214. [PMC free article] [PubMed]
  • Tomb JF. A periplasmic protein disulfide oxidoreductase is required for transformation of Haemophilus influenzae Rd. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10252–10256. [PMC free article] [PubMed]
  • De Graaf FK, Oudega B. Production and release of cloacin DF13 and related colicins. Curr Top Microbiol Immunol. 1986;125:183–205. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links