• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Dec 1986; 83(23): 8878–8882.
PMCID: PMC387036

Preferential DNA repair of an active gene in human cells.

Abstract

Removal of pyrimidine dimers was measured in defined sequences in human cells amplified for the dihydrofolate reductase (DHFR) gene. We quantitated repair in specific restriction fragments by using the dimer-specific bacteriophage T4 endonuclease V and analysis by Southern blotting. Within 4 hr after 5- or 10-J/m2 UV irradiation, more than 60% of the dimers had been removed from a 20-kilobase fragment that lies entirely within the transcription unit of the DHFR gene and from a 25-kilobase fragment located in the 5' flanking region of the gene. Repair in the overall genome was measured by analyzing cellular DNA treated with T4 endonuclease V in alkaline sucrose gradients. Sixty-nine percent of the dimers were removed from the genome overall within 24 hr after irradiation, but only 25% were removed within 4 hr and 38% were removed within 8 hr. These results demonstrate a strong preferential rate of removal of dimers from the 50-kilobase region that includes the transcriptionally active DHFR gene compared to that in total cellular DNA. We confirmed that DHFR-containing DNA is repaired more rapidly than bulk DNA by using an approach that provides a direct comparison between repair in specific sequences and repair in total cellular DNA. We also show that the DHFR-containing sequences are repaired more rapidly than the nontranscribed repetitive alpha DNA sequences. Our finding of preferential early repair in a transcriptionally active region in overall repair-proficient cells suggests that selective dimer removal from active sequences may be a general characteristic of mammalian DNA repair.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Setlow RB. Repair deficient human disorders and cancer. Nature. 1978 Feb 23;271(5647):713–717. [PubMed]
  • Cleaver JE. Defective repair replication of DNA in xeroderma pigmentosum. Nature. 1968 May 18;218(5142):652–656. [PubMed]
  • van Zeeland AA, Smith CA, Hanawalt PC. Sensitive determination of pyrimidine dimers in DNA of UV-irradiated mammalian cells. Introduction of T4 endonuclease V into frozen and thawed cells. Mutat Res. 1981 Jun;82(1):173–189. [PubMed]
  • Mortelmans K, Friedberg EC, Slor H, Thomas G, Cleaver JE. Defective thymine dimer excision by cell-free extracts of xeroderma pigmentosum cells. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2757–2761. [PMC free article] [PubMed]
  • Zolan ME, Cortopassi GA, Smith CA, Hanawalt PC. Deficient repair of chemical adducts in alpha DNA of monkey cells. Cell. 1982 Mar;28(3):613–619. [PubMed]
  • Bohr VA, Smith CA, Okumoto DS, Hanawalt PC. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell. 1985 Feb;40(2):359–369. [PubMed]
  • Bohr VA, Okumoto DS, Hanawalt PC. Survival of UV-irradiated mammalian cells correlates with efficient DNA repair in an essential gene. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3830–3833. [PMC free article] [PubMed]
  • Madhani HD, Bohr VA, Hanawalt PC. Differential DNA repair in transcriptionally active and inactive proto-oncogenes: c-abl and c-mos. Cell. 1986 May 9;45(3):417–423. [PubMed]
  • Weintraub H, Groudine M. Chromosomal subunits in active genes have an altered conformation. Science. 1976 Sep 3;193(4256):848–856. [PubMed]
  • Reeves R. Transcriptionally active chromatin. Biochim Biophys Acta. 1984 Sep 10;782(4):343–393. [PubMed]
  • Zelle B, Reynolds RJ, Kottenhagen MJ, Schuite A, Lohman PH. The influence of the wavelength of ultraviolet radiation on survival, mutation induction and DNA repair in irradiated Chinese hamster cells. Mutat Res. 1980 Aug;72(3):491–509. [PubMed]
  • Sauerbier W, Hercules K. Gene and transcription unit mapping by radiation effects. Annu Rev Genet. 1978;12:329–363. [PubMed]
  • Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. [PubMed]
  • Wahl GM, Stern M, Stark GR. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3683–3687. [PMC free article] [PubMed]
  • Rigby PW, Dieckmann M, Rhodes C, Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. [PubMed]
  • Yang JK, Masters JN, Attardi G. Human dihydrofolate reductase gene organization. Extensive conservation of the G + C-rich 5' non-coding sequence and strong intron size divergence from homologous mammalian genes. J Mol Biol. 1984 Jun 25;176(2):169–187. [PubMed]
  • Zelle B, Lohman PH. Repair of UV-endonuclease-susceptible sites in the 7 complementation groups of xeroderma pigmentosum A through G. Mutat Res. 1979 Sep;62(2):363–368. [PubMed]
  • Thayer RE, Singer MF, McCutchan TF. Sequence relationships between single repeat units of highly reiterated African Green monkey DNA. Nucleic Acids Res. 1981 Jan 10;9(1):169–181. [PMC free article] [PubMed]
  • Mayne LV, Lehmann AR. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne's syndrome and xeroderma pigmentosum. Cancer Res. 1982 Apr;42(4):1473–1478. [PubMed]
  • Mayne LV. Inhibitors of DNA synthesis (aphidicolin and araC/HU) prevent the recovery of RNA synthesis after UV-irradiation. Mutat Res. 1984 May-Jun;131(5-6):187–191. [PubMed]
  • Crouse GF, Leys EJ, McEwan RN, Frayne EG, Kellems RE. Analysis of the mouse dhfr promoter region: existence of a divergently transcribed gene. Mol Cell Biol. 1985 Aug;5(8):1847–1858. [PMC free article] [PubMed]
  • Mitchell PJ, Carothers AM, Han JH, Harding JD, Kas E, Venolia L, Chasin LA. Multiple transcription start sites, DNase I-hypersensitive sites, and an opposite-strand exon in the 5' region of the CHO dhfr gene. Mol Cell Biol. 1986 Feb;6(2):425–440. [PMC free article] [PubMed]
  • North G. Eukaryotic topoisomerases come into the limelight. Nature. 1985 Aug 1;316(6027):394–395. [PubMed]
  • Weintraub H. Assembly and propagation of repressed and depressed chromosomal states. Cell. 1985 Oct;42(3):705–711. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • MedGen
    MedGen
    Related information in MedGen
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...