• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Oct 1, 1996; 93(20): 10933–10938.
PMCID: PMC38261

Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice.

Abstract

The tet regulatory system in which doxycycline (dox) acts as an inducer of specifically engineered RNA polymerase II promoters was transferred into transgenic mice. Tight control and a broad range of regulation spanning up to five orders of magnitude were monitored dependent on the dox concentration in the water supply of the animals. Administration of dox rapidly induces the synthesis of the indicator enzyme luciferase whose activity rises over several orders of magnitude within the first 4 h in some organs. Induction is complete after 24 h in most organs analyzed. A comparable regulatory potential was revealed with the tet regulatory system where dox prevents transcription activation. Directing the synthesis of the tetracycline-controlled transactivator (tTA) to the liver led to highly specific regulation in hepatocytes where, in presence of dox, less than one molecule of luciferase was detected per cell. By contrast, a more than 10(5)-fold activation of the luciferase gene was observed in the absence of the antibiotic. This regulation was homogeneous throughout but stringently restricted to hepatocytes. These results demonstrate that both tetracycline-controlled transcriptional activation systems provide genetic switches that permit the quantitative control of gene activities in transgenic mice in a tissue-specific manner and, thus, suggest possibilities for the generation of a novel type of conditional mutants.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 1987 Nov 6;51(3):503–512. [PubMed]
  • Sternberg N, Hamilton D. Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol. 1981 Aug 25;150(4):467–486. [PubMed]
  • Byrne GW, Ruddle FH. Multiplex gene regulation: a two-tiered approach to transgene regulation in transgenic mice. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5473–5477. [PMC free article] [PubMed]
  • Lakso M, Sauer B, Mosinger B, Jr, Lee EJ, Manning RW, Yu SH, Mulder KL, Westphal H. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6232–6236. [PMC free article] [PubMed]
  • Gu H, Zou YR, Rajewsky K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell. 1993 Jun 18;73(6):1155–1164. [PubMed]
  • Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science. 1994 Jul 1;265(5168):103–106. [PubMed]
  • Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5547–5551. [PMC free article] [PubMed]
  • Gossen M, Freundlieb S, Bender G, Müller G, Hillen W, Bujard H. Transcriptional activation by tetracyclines in mammalian cells. Science. 1995 Jun 23;268(5218):1766–1769. [PubMed]
  • Weinmann P, Gossen M, Hillen W, Bujard H, Gatz C. A chimeric transactivator allows tetracycline-responsive gene expression in whole plants. Plant J. 1994 Apr;5(4):559–569. [PubMed]
  • Furth PA, St Onge L, Böger H, Gruss P, Gossen M, Kistner A, Bujard H, Hennighausen L. Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9302–9306. [PMC free article] [PubMed]
  • Passman RS, Fishman GI. Regulated expression of foreign genes in vivo after germline transfer. J Clin Invest. 1994 Dec;94(6):2421–2425. [PMC free article] [PubMed]
  • Efrat S, Fusco-DeMane D, Lemberg H, al Emran O, Wang X. Conditional transformation of a pancreatic beta-cell line derived from transgenic mice expressing a tetracycline-regulated oncogene. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3576–3580. [PMC free article] [PubMed]
  • Talbot D, Descombes P, Schibler U. The 5' flanking region of the rat LAP (C/EBP beta) gene can direct high-level, position-independent, copy number-dependent expression in multiple tissues in transgenic mice. Nucleic Acids Res. 1994 Mar 11;22(5):756–766. [PMC free article] [PubMed]
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. [PubMed]
  • Shockett P, Difilippantonio M, Hellman N, Schatz DG. A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6522–6526. [PMC free article] [PubMed]
  • Boshart M, Weber F, Jahn G, Dorsch-Häsler K, Fleckenstein B, Schaffner W. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell. 1985 Jun;41(2):521–530. [PubMed]
  • Furth PA, Hennighausen L, Baker C, Beatty B, Woychick R. The variability in activity of the universally expressed human cytomegalovirus immediate early gene 1 enhancer/promoter in transgenic mice. Nucleic Acids Res. 1991 Nov 25;19(22):6205–6208. [PMC free article] [PubMed]
  • Yin DX, Zhu L, Schimke RT. Tetracycline-controlled gene expression system achieves high-level and quantitative control of gene expression. Anal Biochem. 1996 Mar 15;235(2):195–201. [PubMed]
  • Dhawan J, Rando TA, Elson SL, Bujard H, Blau HM. Tetracycline-regulated gene expression following direct gene transfer into mouse skeletal muscle. Somat Cell Mol Genet. 1995 Jul;21(4):233–240. [PubMed]
  • Chrast-Balz J, Hooft van Huijsduijnen R. Bi-directional gene switching with the tetracycline repressor and a novel tetracycline antagonist. Nucleic Acids Res. 1996 Aug 1;24(15):2900–2904. [PMC free article] [PubMed]
  • Teitelbaum SL, Abu-Amer Y, Ross FP. Molecular mechanisms of bone resorption. J Cell Biochem. 1995 Sep;59(1):1–10. [PubMed]
  • Baskar JF, Smith PP, Nilaver G, Jupp RA, Hoffmann S, Peffer NJ, Tenney DJ, Colberg-Poley AM, Ghazal P, Nelson JA. The enhancer domain of the human cytomegalovirus major immediate-early promoter determines cell type-specific expression in transgenic mice. J Virol. 1996 May;70(5):3207–3214. [PMC free article] [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...