• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of microrevMicrobiol Mol Biol Rev ArchivePermissionsJournals.ASM.orgMMBR ArticleJournal InfoAuthorsReviewers
Microbiol Rev. Sep 1986; 50(3): 314–352.
PMCID: PMC373073

Biosynthesis and metabolism of arginine in bacteria.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (8.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Abd-el-Al A, Ingraham JL. Control of carbamyl phosphate synthesis in Salmonella typhimurium. J Biol Chem. 1969 Aug 10;244(15):4033–4038. [PubMed]
  • Abd-el-Al A, Ingraham JL. Cold sensitivity and other phenotypes resulting from mutation in pyrA gene. J Biol Chem. 1969 Aug 10;244(15):4039–4045. [PubMed]
  • Abd-el-Al A. Arginine-auxotrophic phenotype resulting from a mutation in the pryA gene of Escherichia coli B-r. J Bacteriol. 1969 Jan;97(1):466–468. [PMC free article] [PubMed]
  • Abdelal AT. Arginine catabolism by microorganisms. Annu Rev Microbiol. 1979;33:139–168. [PubMed]
  • Abdelal AT, Nainan OV. Regulation of N-acetylglutamate synthesis in Salmonella typhimurium. J Bacteriol. 1979 Feb;137(2):1040–1042. [PMC free article] [PubMed]
  • Abdelal AT, Bibb WF, Nainan O. Carbamate kinase from Pseudomonas aeruginosa: purification, characterization, physiological role, and regulation. J Bacteriol. 1982 Sep;151(3):1411–1419. [PMC free article] [PubMed]
  • Abdelal AT, Bussey L, Vickers L. Carbamoylphosphate synthetase from Pseudomonas aeruginosa. Subunit composition, kinetic analysis and regulation. Eur J Biochem. 1983 Jan 1;129(3):697–702. [PubMed]
  • Abdelal AT, Ingraham JL. Carbamylphosphate synthetase from Salmonella typhimurium. Regulations, subunit composition, and function of the subunits. J Biol Chem. 1975 Jun 25;250(12):4410–4417. [PubMed]
  • Abdelal AT, Griego E, Ingraham JL. Arginine-sensitive phenotype of mutations in pyrA of Salmonella typhimurium: role of ornithine carbamyltransferase in the assembly of mutant carbamylphosphate synthetase. J Bacteriol. 1976 Oct;128(1):105–113. [PMC free article] [PubMed]
  • Abdelal AT, Griego E, Ingraham JL. Arginine auxotrophic phenotype of mutation in pyrA of Salmonella typhimurium: role of N-acetylornithine in the maturation of mutant carbamylphosphate synthetase. J Bacteriol. 1978 May;134(2):528–536. [PMC free article] [PubMed]
  • Abdelal AT, Kennedy EH, Nainan O. Ornithine transcarbamylase from Salmonella typhimurium: purification, subunit composition, kinetic analysis, and immunological cross-reactivity. J Bacteriol. 1977 Mar;129(3):1387–1396. [PMC free article] [PubMed]
  • ALBRECHT AM, VOGEL HJ. ACETYLORNITHINE DELTA-TRANSAMINASE. PARTIAL PURIFICATION AND REPRESSION BEHAVIOR. J Biol Chem. 1964 Jun;239:1872–1876. [PubMed]
  • Anderson PM. Evidence that the catalytic and regulatory functions of carbamylphosphate synthetase from Escherichia coli are not dependent on oligomer formation. Biochemistry. 1977 Feb 22;16(4):583–586. [PubMed]
  • Anderson PM. Binding of allosteric effectors to carbamyl-phosphate synthetase from Escherichia coli. Biochemistry. 1977 Feb 22;16(4):587–593. [PubMed]
  • Anderson PM, Marvin SV. Effect of allosteric effectors and adenosine triphosphate on the aggregation and rate of inhibition by N-ethylmaleimide of carbamyl phosphate synthetase of Escherichia coli. Biochemistry. 1970 Jan 6;9(1):171–178. [PubMed]
  • Anderson PM, Meister A. Evidence for an activated form of carbon dioxide in the reaction catalyzed by Escherichia coli carbamyl phosphate synthetase. Biochemistry. 1965 Dec;4(12):2803–2809. [PubMed]
  • Anderson PM, Meister A. Bicarbonate-dependent cleavage of adenosine triphosphate and other reactions catalyzed by Escherichia coli carbamyl phosphate synthetase. Biochemistry. 1966 Oct;5(10):3157–3163. [PubMed]
  • Anderson PM, Meister A. Control of Escherichia coli carbamyl phosphate synthetase by purine and pyrimidine nucleotides. Biochemistry. 1966 Oct;5(10):3164–3169. [PubMed]
  • Bachmann BJ. Linkage map of Escherichia coli K-12, edition 7. Microbiol Rev. 1983 Jun;47(2):180–230. [PMC free article] [PubMed]
  • Bachmann BJ, Low KB, Taylor AL. Recalibrated linkage map of Escherichia coli K-12. Bacteriol Rev. 1976 Mar;40(1):116–167. [PMC free article] [PubMed]
  • BACHRACH U, PERSKY S, RAZIN S. Metabolism of amines. 2. The oxidation of natural polyamines by Myocobacterium smegmatis. Biochem J. 1960 Aug;76:306–310. [PMC free article] [PubMed]
  • BAICH A, VOGEL HJ. N-Acetyl-gamma-Ilutamokinase and N-acetylglutamic gamma-semialdehyde dehydrogenase: repressible enzymes of arginine synthesis in Escherichia coli. Biochem Biophys Res Commun. 1962 Jun 4;7:491–496. [PubMed]
  • Barbour MG, Bayly RC. Regulation of the meta-cleavage of 4-hydroxyphenylacetic acid by Pseudomonas putida. Biochem Biophys Res Commun. 1976 May 23;76(2):565–571. [PubMed]
  • Barile MF, Schimke RT, Riggs DB. Presence of the arginine dihydrolase pathway in Mycoplasma. J Bacteriol. 1966 Jan;91(1):189–192. [PMC free article] [PubMed]
  • Baumberg S. Acetylhistidine as substrate for acetylornithinase: a new system for the selection of arginine regulation mutants in Escherichia coli. Mol Gen Genet. 1970;106(2):162–173. [PubMed]
  • Baumberg S, Harwood CR. Carbon and nitrogen repression of arginine catabolic enzymes in Bacillus subtilis. J Bacteriol. 1979 Jan;137(1):189–196. [PMC free article] [PubMed]
  • Baumberg S, Mountain A. Bacillus subtilis 168 mutants resistant to arginine hydroxamate in the presence of ornithine or citrulline. J Gen Microbiol. 1984 May;130(5):1247–1252. [PubMed]
  • Beacham IR, Schweitzer BW, Warrick HM, Carbon J. The nucleotide sequence of the yeast ARG4 gene. Gene. 1984 Sep;29(3):271–279. [PubMed]
  • Beeftinck F, Cunin R, Glansdorff N. Arginine gene duplications in recombination proficient and deficient strains of Escherichia coli K 12. Mol Gen Genet. 1974;132(3):241–253. [PubMed]
  • Bencini DA, Houghton JE, Hoover TA, Foltermann KF, Wild JR, O'Donovan GA. The DNA sequence of argI from Escherichia coli K12. Nucleic Acids Res. 1983 Dec 10;11(23):8509–8518. [PMC free article] [PubMed]
  • Beny G, Boyen A, Charlier D, Lissens W, Feller A, Glansdorff N. Promoter mapping and selection of operator mutants by using insertion of bacteriophage Mu in the argECBH divergent operon of Escherichia coli K-12. J Bacteriol. 1982 Jul;151(1):62–67. [PMC free article] [PubMed]
  • Beny G, Cunin R, Glansdorff N, Boyen A, Charlier J, Kelker N. Transcription of Regions within the divergent argECBH operon of Escherichia coli: evidence for lack of an attenuation mechanism. J Bacteriol. 1982 Jul;151(1):58–61. [PMC free article] [PubMed]
  • Besemer J, Görtz G, Charlier D. Deletions and DNA rearrangements within the transposable DNA element IS2. A model for the creation of palindromic DNA by DNA repair synthesis. Nucleic Acids Res. 1980 Dec 11;8(23):5825–5833. [PMC free article] [PubMed]
  • Billheimer JT, Carnevale HN, Leisinger T, Eckhardt T, Jones EE. Ornithine delta-transaminase activity in Escherichia coli: its identity with acetylornithine delta-transaminase. J Bacteriol. 1976 Sep;127(3):1315–1323. [PMC free article] [PubMed]
  • Billheimer JT, Shen MY, Carnevale HN, Horton HR, Jones EE. Isolation and characterization of acetylornithine delta-transaminase of wild-type Escherichia coli W. Comparison with arginine-inducible acetylornithine delta-transaminase. Arch Biochem Biophys. 1979 Jul;195(2):401–413. [PubMed]
  • Blakemore RP, Canale-Parola E. Arginine catabolism by Treponema denticola. J Bacteriol. 1976 Nov;128(2):616–622. [PMC free article] [PubMed]
  • Boettcher BR, Meister A. Covalent modification of the active site of carbamyl phosphate synthetase by 5'-p-fluorosulfonylbenzoyladenosine. Direct evidence for two functionally different ATP-binding sites. J Biol Chem. 1980 Aug 10;255(15):7129–7133. [PubMed]
  • Bouvier J, Patte JC, Stragier P. Multiple regulatory signals in the control region of the Escherichia coli carAB operon. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4139–4143. [PMC free article] [PubMed]
  • Boyen A, Piette J, Cunin R, Glansdorff N. Enhancement of translation efficiency in Escherichia coli by mutations in a proximal domain of messenger RNA. J Mol Biol. 1982 Dec 15;162(3):715–720. [PubMed]
  • Bretscher AP, Baumberg S. Divergent transcription of the argECBH cluster of escherichia coli k12. Mutations which alter the control of enzyme synthesis. J Mol Biol. 1976 Apr 5;102(2):205–220. [PubMed]
  • Brohn F, Tchen TT. A single transaminase for 1,4-diaminobutane and 4-aminobutyrate in a Pseudomonas species. Biochem Biophys Res Commun. 1971 Nov 5;45(3):578–582. [PubMed]
  • Ratner S. Enzymes of arginine and urea synthesis. Adv Enzymol Relat Areas Mol Biol. 1973;39:1–90. [PubMed]
  • Bussey LB, Ingraham JL. A regulatory gene (use) affecting the expression of pyrA and certain other pyrimidine genes. J Bacteriol. 1982 Jul;151(1):144–152. [PMC free article] [PubMed]
  • Callewaert DM, Rosemblatt MS, Suzuki K, Tchen TT. Succinic semialdehyde dehydrogenase from a Pseudomonas species. I. Purification and chemical properties. J Biol Chem. 1973 Sep 10;248(17):6009–6013. [PubMed]
  • Callewaert DM, Rosemblatt MS, Tchen TT. Purification and properties of 4-aminobutanal dehydrogenase from a Pseudomonas species. J Biol Chem. 1974 Mar 25;249(6):1737–1741. [PubMed]
  • Callewaert DM, Rosemblatt MS, Tchen TT. Purification and properties of 3-aminopropanal dehydrogenase from a Pseudomonas species. Biochemistry. 1974 Sep 24;13(20):4181–4184. [PubMed]
  • Casadaban MJ, Cohen SN. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4530–4533. [PMC free article] [PubMed]
  • Casey CA, Anderson PM. Glutamine- and N-acetyl-L-glutamate-dependent carbamoyl phosphate synthetase from Micropterus salmoides. Purification, properties, and inhibition by glutamine analogs. J Biol Chem. 1983 Jul 25;258(14):8723–8732. [PubMed]
  • Celis RT. Chain-terminating mutants affecting a periplasmic binding protein involved in the active transport of arginine and ornithine in Escherichia coli. J Biol Chem. 1981 Jan 25;256(2):773–779. [PubMed]
  • Celis RT. Mapping of two loci affecting the synthesis and structure of a periplasmic protein involved in arginine and ornithine transport in Escherichia coli K-12. J Bacteriol. 1982 Sep;151(3):1314–1319. [PMC free article] [PubMed]
  • Celis RT. Phosphorylation in vivo and in vitro of the arginine-ornithine periplasmic transport protein of Escherichia coli. Eur J Biochem. 1984 Dec 3;145(2):403–411. [PubMed]
  • Celis TF, Maas WK. Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. IV. Further studies on the role of arginine transfer RNA repression of the enzymes of arginine biosynthesis. J Mol Biol. 1971 Nov 28;62(1):179–188. [PubMed]
  • Charlier D, Crabeel M, Cunin R, Glansdorff N. Tandem and inverted repeats of arginine genes in Escherichia coli: structural and evolutionary considerations. Mol Gen Genet. 1979 Jul 2;174(1):75–88. [PubMed]
  • Charlier D, Piette J, Glansdorff N. IS3 can function as a mobile promoter in E. coli. Nucleic Acids Res. 1982 Oct 11;10(19):5935–5948. [PMC free article] [PubMed]
  • Charlier D, Severne Y, Zafarullah M, Glansdorff N. Turn-on of inactive genes by promoter recruitment in Escherichia coli: inverted repeats resulting in artificial divergent operons. Genetics. 1983 Nov;105(3):469–488. [PMC free article] [PubMed]
  • Charlier J, Gerlo E. Arginyl-tRNA synthetase from Escherichia coli. Influence of arginine biosynthetic precursors on the charging of arginine-acceptor tRNA with [14C]arginine. Eur J Biochem. 1976 Nov 1;70(1):137–145. [PubMed]
  • Condon S, Collins JK, O'donovan GA. Regulation of arginine and pyrimidine biosynthesis in Pseudomonas putida. J Gen Microbiol. 1976 Feb;92(2):375–383. [PubMed]
  • Costilow RN, Cooper D. Identity of proline dehydrogenase and delta1-pyrroline-5-carboxylic acid reductase in Clostridium sporogenes. J Bacteriol. 1978 Apr;134(1):139–146. [PMC free article] [PubMed]
  • Costilow RN, Laycock L. Reactions involved in the conversion of ornithine to proline in Clostridia. J Bacteriol. 1969 Nov;100(2):662–667. [PMC free article] [PubMed]
  • Costilow RN, Laycock L. Ornithine cyclase (deaminating). Purification of a protein that converts ornithine to proline and definition of the optimal assay conditions. J Biol Chem. 1971 Nov;246(21):6655–6660. [PubMed]
  • Crabeel M, Charlier D, Boyen A, Cunin R, Glansdorff N. Mutant selection in the control region of the arg ECBH bipolar operon of Escherichia coli. Arch Int Physiol Biochim. 1974 Dec;82(5):973–974. [PubMed]
  • Crabeel M, Charlier D, Cunin R, Boyen A, Glansdorff N, Piérard A. Accumulation of arginine precursors in Escherichia coli: effects on growth, enzyme repression, and application to the forward selection of arginine auxotrophs. J Bacteriol. 1975 Sep;123(3):898–904. [PMC free article] [PubMed]
  • Crabeel M, Charlier D, Cunin R, Glansdorff N. Cloning and endonuclease restriction analysis of argF and of the control region of the argECBH bipolar operon in Escherichia coli. Gene. 1979 Mar;5(3):207–231. [PubMed]
  • Crabeel M, Charlier D, Weyens G, Feller A, Piérard A, Glansdorff N. Use of gene cloning to determine polarity of an operon: genes carAB of Escherichia coli. J Bacteriol. 1980 Aug;143(2):921–925. [PMC free article] [PubMed]
  • Crane CJ, Abdelal AT. Regulation of carbamylphosphate synthesis in Serratia marcescens. J Bacteriol. 1980 Aug;143(2):588–593. [PMC free article] [PubMed]
  • Crow VL, Thomas TD. Arginine metabolism in lactic streptococci. J Bacteriol. 1982 Jun;150(3):1024–1032. [PMC free article] [PubMed]
  • Cunin R, Boyen A, Pouwels P, Glansdorff N, Crabeel M. Parameters of gene expression in the bipolar argECBH operon of E. coli K12. The question of translational control. Mol Gen Genet. 1975 Sep 15;140(1):51–60. [PubMed]
  • Cunin R, Eckhardt T, Piette J, Boyen A, Piérard A, Glansdorff N. Molecular basis for modulated regulation of gene expression in the arginine regulon of Escherichia coli K-12. Nucleic Acids Res. 1983 Aug 11;11(15):5007–5019. [PMC free article] [PubMed]
  • Cunin R, Kelker N, Boyen A, Yang H, Zubay G, Glansdorff N, Maas WK. Involvement of arginine in in vitro repression of transcription of arginine genes C, B and H in Escherichia coli K 12. Biochem Biophys Res Commun. 1976 Mar 22;69(2):377–382. [PubMed]
  • Dalrymple B, Arber W. Promotion of RNA transcription on the insertion element IS30 of E. coli K12. EMBO J. 1985 Oct;4(10):2687–2693. [PMC free article] [PubMed]
  • DEDEKEN RH. BIOSYNTH'ESE DE L'ARGININE CHEZ LA LEVURE. I. LE SORT DE LA N-ALPHA-AC'ETYLORINITHINE. Biochim Biophys Acta. 1963 Dec 13;78:606–616. [PubMed]
  • Degryse E. Evidence that yeast acetylornithinase is a carboxypeptidase. FEBS Lett. 1974 Aug 1;43(3):285–288. [PubMed]
  • Degryse E, Glansdorff N, Piérard A. Arginine biosynthesis and degradation in an extreme thermophile, strain Z05. Arch Int Physiol Biochim. 1976;84(3):599–601. [PubMed]
  • Deibel RH. Utilization of arginine as an energy source for the growth of Streptococcus faecalis. J Bacteriol. 1964 May;87(5):988–992. [PMC free article] [PubMed]
  • Dessaux Y, Petit A, Tempé J, Demarez M, Legrain C, Wiame JM. Arginine catabolism in Agrobacterium strains: role of the Ti plasmid. J Bacteriol. 1986 Apr;166(1):44–50. [PMC free article] [PubMed]
  • Donnelly MI, Cooper RA. Two succinic semialdehyde dehydrogenases are induced when Escherichia coli K-12 Is grown on gamma-aminobutyrate. J Bacteriol. 1981 Mar;145(3):1425–1427. [PMC free article] [PubMed]
  • Donnelly MI, Cooper RA. Succinic semialdehyde dehydrogenases of Escherichia coli: their role in the degradation of p-hydroxyphenylacetate and gamma-aminobutyrate. Eur J Biochem. 1981 Jan;113(3):555–561. [PubMed]
  • Dover S, Halpern YS. Utilization of -aminobutyric acid as the sole carbon and nitrogen source by Escherichia coli K-12 mutants. J Bacteriol. 1972 Feb;109(2):835–843. [PMC free article] [PubMed]
  • Dover S, Halpern YS. Control of the pathway of -aminobutyrate breakdown in Escherichia coli K-12. J Bacteriol. 1972 Apr;110(1):165–170. [PMC free article] [PubMed]
  • Dover S, Halpern YS. Genetic analysis of the gamma-aminobutyrate utilization pathway in Escherichia coli K-12. J Bacteriol. 1974 Feb;117(2):494–501. [PMC free article] [PubMed]
  • Duchange N, Zakin MM, Ferrara P, Saint-Girons I, Park I, Tran SV, Py MC, Cohen GN. Structure of the metJBLF cluster in Escherichia coli K12. Sequence of the metB structural gene and of the 5'- and 3'-flanking regions of the metBL operon. J Biol Chem. 1983 Dec 25;258(24):14868–14871. [PubMed]
  • Dundas IE, Halvorson HO. Arginine metabolism in Halobacterium salinarium, an obligately halophilic bacterium. J Bacteriol. 1966 Jan;91(1):113–119. [PMC free article] [PubMed]
  • Dyer JK, Costilow RN. Fermentation of ornithine by Clostridium sticklandii. J Bacteriol. 1968 Nov;96(5):1617–1622. [PMC free article] [PubMed]
  • Dyer JK, Costilow RN. 2,4-diaminovaleric acid: an intermediate in the anaerobic oxidation of ornithine by Clostridium sticklandii. J Bacteriol. 1970 Jan;101(1):77–83. [PMC free article] [PubMed]
  • Ellis JG, Kerr A, Tempé J, Petit A. Arginine catabolism: a new function of both octopine and nopaline Ti-plasmids of Agrobacterium. Mol Gen Genet. 1979 Jun 20;173(3):263–269. [PubMed]
  • Elseviers D, Cunin R, Glansdorff N. Control regions within the argECBH gene cluster of Escherichia coli K12. Mol Gen Genet. 1972;117(4):349–366. [PubMed]
  • Emery T. Hydroxamic acids of natural origin. Adv Enzymol Relat Areas Mol Biol. 1971;35:135–185. [PubMed]
  • ENNIS HL, GORINI L. Control of arginine biosynthesis in strains of Escherichia coli not repressible by arginine. J Mol Biol. 1961 Aug;3:439–446. [PubMed]
  • Falmagne P, Portetelle D, Stalon V. Immunological and structural relatedness of catabolic ornithine carbamoyltransferases and the anabolic enzymes of enterobacteria. J Bacteriol. 1985 Feb;161(2):714–719. [PMC free article] [PubMed]
  • Fan CL, Miller DL, Rodwell VW. Metabolism of basic amino acids in Pseudomonas putida. Transport of lysine, ornithine, and arginine. J Biol Chem. 1972 Apr 25;247(8):2283–2288. [PubMed]
  • Fenske JD, Kenny GE. Role of arginine deiminase in growth of Mycoplasma hominis. J Bacteriol. 1976 Apr;126(1):501–510. [PMC free article] [PubMed]
  • Forsyth GW, Theil EC, Jones EE, Vogel HJ. Isolation and characterization of arginine-inducible acetylornithine delta-transaminase from Escherichia coli. J Biol Chem. 1970 Oct 25;245(20):5354–5359. [PubMed]
  • Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, et al. The phylogeny of prokaryotes. Science. 1980 Jul 25;209(4455):457–463. [PubMed]
  • Friedrich B, Friedrich CG, Magasanik B. Catabolic N2-acetylornithine 5-aminotransferase of Klebsiella aerogenes: control of synthesis by induction, catabolite repression, and activation by glutamine synthetase. J Bacteriol. 1978 Feb;133(2):686–691. [PMC free article] [PubMed]
  • Friedrich B, Magasanik B. Utilization of arginine by Klebsiella aerogenes. J Bacteriol. 1978 Feb;133(2):680–685. [PMC free article] [PubMed]
  • Friedrich B, Magasanik B. Enzymes of agmatine degradation and the control of their synthesis in Klebsiella aerogenes. J Bacteriol. 1979 Mar;137(3):1127–1133. [PMC free article] [PubMed]
  • Früh H, Leisinger T. Properties and localization of N-acetylglutamate deacetylase from Pseudomonas aeruginosa. J Gen Microbiol. 1981 Jul;125(1):1–10. [PubMed]
  • Gallant JA. Stringent control in E. coli. Annu Rev Genet. 1979;13:393–415. [PubMed]
  • Gardner MM, Hennig DO, Kelln RA. Control of arg gene expression in Salmonella typhimurium by the arginine repressor from Escherichia coli K-12. Mol Gen Genet. 1983;189(3):458–462. [PubMed]
  • Ghosal D, Saedler H. DNA sequence of the mini-insertion IS2--6 and its relation to the sequence of IS2. Nature. 1978 Oct 19;275(5681):611–617. [PubMed]
  • Gigot D, Glansdorff N, Legrain C, Piérard A, Stalon V, Konigsberg W, Caplier I, Strosberg AD, Hervé G. Comparison of the N-terminal sequences of aspartate and ornithine carbamoyltransferases of Escherichia coli. FEBS Lett. 1977 Sep 1;81(1):28–32. [PubMed]
  • Glansdorff N, Charlier D, Zafarullah M. Activation of gene expression by IS2 and IS3. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 1):153–156. [PubMed]
  • Glansdorff N, Dambly C, Palchaudhuri S, Crabeel M, Piérard A, Halleux P. Isolation and heteroduplex mapping of a lambda transducing bacteriophage carrying the structural genes for carbamoylphosphate synthase: regulation of enzyme synthesis in Escherichia coli K-12 lysogens. J Bacteriol. 1976 Jul;127(1):302–308. [PMC free article] [PubMed]
  • Glansdorff N, Sand G, Verhoef C. The dual genetic control of ornithine transcarbamylase synthesis in Escherichia coli K12. Mutat Res. 1967 Nov-Dec;4(6):743–751. [PubMed]
  • Gorini L. ANTAGONISM BETWEEN SUBSTRATE AND REPRESSOR IN CONTROLLING THE FORMATION OF A BIOSYNTHETIC ENZYME. Proc Natl Acad Sci U S A. 1960 May;46(5):682–690. [PMC free article] [PubMed]
  • GORINI L, GUNDERSEN W, BURGER M. Genetics of regulation of enzyme synthesis in the arginine biosynthetic pathway of Escherichia coli. Cold Spring Harb Symp Quant Biol. 1961;26:173–182. [PubMed]
  • Guha A. Divergent orientation of transcription from the biotin locus of Escherichia coli. J Mol Biol. 1971 Feb 28;56(1):53–62. [PubMed]
  • Guirard BM, Snell EE. Purification and properties of ornithine decarboxylase from Lactobacillus sp. 30a. J Biol Chem. 1980 Jun 25;255(12):5960–5964. [PubMed]
  • Hass D, Evans R, Mercenier A, Simon JP, Stalon V. Genetic and physiological characterization of Pseudomonas aeruginosa mutants affected in the catabolic ornithine carbamoyltransferase. J Bacteriol. 1979 Sep;139(3):713–720. [PMC free article] [PubMed]
  • Haas D, Holloway BW, Schamböck A, Leisinger T. The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet. 1977 Jul 7;154(1):7–22. [PubMed]
  • Haas D, Kurer V, Leisinger T. N-acetylglutamate synthetase of Pseudomonas aeruginosa. An assay in vitro and feedback inhibition by arginine. Eur J Biochem. 1972 Dec 4;31(2):290–295. [PubMed]
  • Haas D, Leisinger T. Multiple control of N-acetylglutamate synthetase from Pseudomonas aeruginosa: synergistic inhibition by acetylglutamate and polyamines. Biochem Biophys Res Commun. 1974 Sep 9;60(1):42–47. [PubMed]
  • Haas D, Leisinger T. N-acetylglutamate 5-phosphotransferase of Pseudomonas aeruginosa. Catalytic and regulatory properties. Eur J Biochem. 1975 Mar 17;52(2):377–393. [PubMed]
  • Haas D, Matsumoto H, Moretti P, Stalon V, Mercenier A. Arginine degradation in Pseudomonas aeruginosa mutants blocked in two arginine catabolic pathways. Mol Gen Genet. 1984;193(3):437–444. [PubMed]
  • Hall BG, Gallant JA. On the rate of messenger decay during amino acid starvation. J Mol Biol. 1973 Jan;73(1):121–124. [PubMed]
  • Hall BG, Yokoyama S, Calhoun DH. Role of cryptic genes in microbial evolution. Mol Biol Evol. 1983 Dec;1(1):109–124. [PubMed]
  • Hartmann R, Sickinger HD, Oesterhelt D. Anaerobic growth of halobacteria. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3821–3825. [PMC free article] [PubMed]
  • Harwood CR, Baumberg S. Arginine hydroxamate-resistant mutants of Bacillus subtilis with altered control of arginine metabolism. J Gen Microbiol. 1977 May;100(1):177–188. [PubMed]
  • Henner DJ, Hoch JA. The Bacillus subtilis chromosome. Microbiol Rev. 1980 Mar;44(1):57–82. [PMC free article] [PubMed]
  • Hilger F, Simon JP, Stalon V. Yeast argininosuccinate synthetase. Purification; structural and kinetic properties. Eur J Biochem. 1979 Feb 15;94(1):153–163. [PubMed]
  • Hinton DM, Musso RE. Transcription initiation sites within an IS2 insertion in a Gal-constitutive mutant of Escherichia coli. Nucleic Acids Res. 1982 Aug 25;10(16):5015–5031. [PMC free article] [PubMed]
  • Hirshfield IN, Horn PC, Hopwood DA, Maas WK, DeDeken R. Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. 3. Repression of enzymes of arginine biosynthesis in arginyl-tRNA synthetase mutants. J Mol Biol. 1968 Jul 14;35(1):83–93. [PubMed]
  • Hoare DS, Hoare SL. Feedback regulation of arginine biosynthesis in blue-green algae and photosynthetic bacteria. J Bacteriol. 1966 Aug;92(2):375–379. [PMC free article] [PubMed]
  • Hood W, Carr NG. Apparent lack of control by repression of arginine metabolism in blue-green algae. J Bacteriol. 1971 Jul;107(1):365–367. [PMC free article] [PubMed]
  • Hoover TA, Roof WD, Foltermann KF, O'Donovan GA, Bencini DA, Wild JR. Nucleotide sequence of the structural gene (pyrB) that encodes the catalytic polypeptide of aspartate transcarbamoylase of Escherichia coli. Proc Natl Acad Sci U S A. 1983 May;80(9):2462–2466. [PMC free article] [PubMed]
  • Horwich AL, Fenton WA, Williams KR, Kalousek F, Kraus JP, Doolittle RF, Konigsberg W, Rosenberg LE. Structure and expression of a complementary DNA for the nuclear coded precursor of human mitochondrial ornithine transcarbamylase. Science. 1984 Jun 8;224(4653):1068–1074. [PubMed]
  • Houghton JE, Bencini DA, O'Donovan GA, Wild JR. Protein differentiation: a comparison of aspartate transcarbamoylase and ornithine transcarbamoylase from Escherichia coli K-12. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4864–4868. [PMC free article] [PubMed]
  • Hu M, Deonier RC. Mapping of IS1 elements flanking the argF gene region on the Escherichia coli K-12 chromosome. Mol Gen Genet. 1981;181(2):222–229. [PubMed]
  • Hutson JY, Downing M. Pyrimidine biosynthesis in Lactobacillus leichmannii. J Bacteriol. 1968 Oct;96(4):1249–1254. [PMC free article] [PubMed]
  • Isaac JH, Holloway BW. Control of arginine biosynthesis in Pseudomonas aeruginosa. J Gen Microbiol. 1972 Dec;73(3):427–438. [PubMed]
  • Issaly IM, Issaly AS. Control of ornithine carbamoyltransferase activityby arginase in Bacillus subtilis. Eur J Biochem. 1974 Dec 2;49(3):485–495. [PubMed]
  • Issaly IM, Issaly AS, Reissig JL. Carbamyl phosphate biosynthesis in Bacillus subtilis. Biochim Biophys Acta. 1970 Mar 18;198(3):482–494. [PubMed]
  • Itikawa H, Baumberg S, Vogel HJ. Enzymic basis for a genetic suppression: accumulation and deacylation of N-acetylglutamic gamma-semialdehyde in enterobacterial mutants. Biochim Biophys Acta. 1968 Jul 9;159(3):547–550. [PubMed]
  • Jacoby GA. Mapping the gene determining ornithine transcarbamylase and its operator in Escherichia coli B. J Bacteriol. 1971 Nov;108(2):645–651. [PMC free article] [PubMed]
  • Jacoby GA. Control of the argECBH cluster in Escherichia coli. Mol Gen Genet. 1972;117(4):337–348. [PubMed]
  • Jacoby GA, Gorini L. A unitary account of the repression mechanism of arginine biosynthesis in Escherichia coli. I. The genetic evidence. J Mol Biol. 1969 Jan 14;39(1):73–87. [PubMed]
  • JAKOBY WB, FREDERICKS J. Pyrrolidine and putrescine metabolism: gamma-aminobutyraldehyde dehydrogenase. J Biol Chem. 1959 Aug;234(8):2145–2150. [PubMed]
  • Jaurin B, Normark S. Insertion of IS2 creates a novel ampC promoter in Escherichia coli. Cell. 1983 Mar;32(3):809–816. [PubMed]
  • Jeng IM, Somack R, Barker HA. Ornithine degradation in Clostridium sticklandii; pyridoxal phosphate and coenzyme A dependent thiolytic cleavage of 2-amino-4-ketopentanoate to alanine and acetyl coenzyme A. Biochemistry. 1974 Jul 2;13(14):2898–2903. [PubMed]
  • Jenness DD, Schachman HK. pryB mutations as suppressors of arginine auxotrophy in Salmonella typhimurium. J Bacteriol. 1980 Jan;141(1):33–40. [PMC free article] [PubMed]
  • Jensen KF, Neuhard J, Schack L. RNA polymerase involvement in the regulation of expression of Salmonella typhimurium pyr genes. Isolation and characterization of a fluorouracil-resistant mutant with high, constitutive expression of the pyrB and pyrE genes due to a mutation in rpoBC. EMBO J. 1982;1(1):69–74. [PMC free article] [PubMed]
  • Jessop AP, Clugston C. Amplification of the ArgF region in strain HfrP4X of E. coli K-12. Mol Gen Genet. 1985;201(2):347–350. [PubMed]
  • Jessop AP, Glansdorff N. Genetic factors affecting recovery of nonpoint mutations in the region of a gene coding for ornithine transcarbamylase: involvement of both the F factor in its chromosomal state and the recA gene. Genetics. 1980 Dec;96(4):779–799. [PMC free article] [PubMed]
  • Jukes TH. Arginine as an evolutionary intruder into protein synthesis. Biochem Biophys Res Commun. 1973 Aug 6;53(3):709–714. [PubMed]
  • Kadner RJ, Maas WK. Regulatory gene mutations affecting arginine biosynthesis in Escherichia coli. Mol Gen Genet. 1971;111(1):1–14. [PubMed]
  • KALMAN SM, DUFFIELD PH, BRZOZOWSKI T. IDENTITY IN ESCHERICHIA COLI OF CARBAMYL PHOSPHOKINASE AND AN ACTIVITY WHICH CATALYZES AMINO GROUP TRANSFER FROM GLUTAMINE TO ORNITHINE IN CITRULLINE SYNTHESIS. Biochem Biophys Res Commun. 1965 Feb 17;18:530–537. [PubMed]
  • Kalman SM, Duffield PH, Brzozowski T. Purification and properties of a bacterial carbamyl phosphate synthetase. J Biol Chem. 1966 Apr 25;241(8):1871–1877. [PubMed]
  • Kaplan JB, Nichols BP. Nucleotide sequence of Escherichia coli pabA and its evolutionary relationship to trp(G)D. J Mol Biol. 1983 Aug 15;168(3):451–468. [PubMed]
  • Kawamura M, Keim PS, Goto Y, Zalkin H, Heinrikson RL. Anthranilate synthetase component II from Pseudomonas putida. Covalent structure and identification of the cysteine residue involved in catalysis. J Biol Chem. 1978 Jul 10;253(13):4659–4668. [PubMed]
  • Keevil CW, Marsh PD, Ellwood DC. Regulation of glucose metabolism in oral streptococci through independent pathways of glucose 6-phosphate and glucose 1-phosphate formation. J Bacteriol. 1984 Feb;157(2):560–567. [PMC free article] [PubMed]
  • Kelker N, Eckhardt T. Regulation of argA operon expression in Escherichia coli K-12: cell-free synthesis of beta-galactosidase under argA control. J Bacteriol. 1977 Oct;132(1):67–72. [PMC free article] [PubMed]
  • Kelker NE, Maas WK, Yang HL, Zubay G. In vitro synthesis and repression of argininosuccinase in Escherichia coli K12; partial purification of the arginine repressor. Mol Gen Genet. 1976 Feb 27;144(1):17–20. [PubMed]
  • Kelley RL, Yanofsky C. Trp aporepressor production is controlled by autogenous regulation and inefficient translation. Proc Natl Acad Sci U S A. 1982 May;79(10):3120–3124. [PMC free article] [PubMed]
  • Kelln RA, Kinahan JJ, Foltermann KF, O'Donovan GA. Pyrimidine biosynthetic enzymes of Salmonella typhimurium, repressed specifically by growth in the presence of cytidine. J Bacteriol. 1975 Nov;124(2):764–774. [PMC free article] [PubMed]
  • Kelln RA, O'Donovan GA. Isolation and partial characterization of an argR mutant of Salmonella typhimurium. J Bacteriol. 1976 Nov;128(2):528–535. [PMC free article] [PubMed]
  • Kelln RA, Zak VL. Arginine regulon control in a Salmonella typhimurium--Escherichia coli hybrid merodiploid. Mol Gen Genet. 1978 May 31;161(3):333–335. [PubMed]
  • Kersten H. On the biological significance of modified nucleosides in tRNA. Prog Nucleic Acid Res Mol Biol. 1984;31:59–114. [PubMed]
  • Khedouri E, Anderson PM, Meister A. Selective inactivation of the glutamine binding site of Escherichia coli carbamyl phosphate synthetase by 2-amino-4-oxo-5-chloropentanoic acid. Biochemistry. 1966 Nov;5(11):3552–3557. [PubMed]
  • Khramov VA, Kondrat'eva EN. Obrazovanie karbamoilfosfata i tsirullina fototrofnymi bakteriiami. Mikrobiologiia. 1981 Sep-Oct;50(5):932–934. [PubMed]
  • Kikuchi A, Gorini L. Similarity of genes argF and argI. Nature. 1975 Aug 21;256(5519):621–624. [PubMed]
  • KIM KH, TCHEN TT. Putrescine--alpha-ketoglutarate trans-aminase in E. coli. Biochem Biophys Res Commun. 1962 Sep 25;9:99–102. [PubMed]
  • KIM KH. ISOLATION AND PROPERTIES OF A PUTRESCINE-DEGRADING MUTANT OF ESCHERICHIA COLI. J Bacteriol. 1963 Aug;86:320–323. [PMC free article] [PubMed]
  • Krzyzek RA, Rogers P. Effect of arginine on the stability and size of argECBH messenger ribonucleic acid in Escherichia coli. J Bacteriol. 1976 Apr;126(1):365–376. [PMC free article] [PubMed]
  • Kuo TT, Stocker BA. Suppression of proline requirement of proA and proAB deletion mutants in Salmonella typhimurium by mutation to arginine requirement. J Bacteriol. 1969 May;98(2):593–598. [PMC free article] [PubMed]
  • Kustu SG, Ames GF. The hisP protein, a known histidine transport component in Salmonella typhimurium, is also an arginine transport component. J Bacteriol. 1973 Oct;116(1):107–113. [PMC free article] [PubMed]
  • Lacroute F, Piérard A, Grenson M, Wiame JM. The biosynthesis of carbamoyl phosphate in Saccharomyces cerevisiae. J Gen Microbiol. 1965 Jul;40(1):127–142. [PubMed]
  • Laishley EJ, Bernlohr RW. The regulation and kinetics of the two ornithine transcarbamylase enzymes of Bacillus licheniformis. Biochim Biophys Acta. 1968 Nov 19;167(3):547–554. [PubMed]
  • Laishley EJ, Bernlohr RW. Regulation of arginine and proline catabolism in Bacillus licheniformis. J Bacteriol. 1968 Aug;96(2):322–329. [PMC free article] [PubMed]
  • Lavallé R. Regulation at the level of translation in the arginine pathway of Escherichia coli K12. J Mol Biol. 1970 Jul 28;51(2):449–451. [PubMed]
  • Legrain C, Halleux P, Stalon V, Glansdorff N. The dual genetic control of ornithine carbamolytransferase in Escherichia coli. A case of bacterial hybrid enzymes. Eur J Biochem. 1972 May;27(1):93–102. [PubMed]
  • Legrain C, Stalon V. Ornithine carbamoyltransferase from Escherichia coli W. Purification, structure and steady-state kinetic analysis. Eur J Biochem. 1976 Mar 16;63(1):289–301. [PubMed]
  • Legrain C, Stalon V, Glansdorff N. Escherichia coli ornithine carbamolytransferase isoenzymes: evolutionary significance and the isolation of lambdaargF and lambdaargI transducing bacteriophages. J Bacteriol. 1976 Oct;128(1):35–38. [PMC free article] [PubMed]
  • Legrain C, Stalon V, Glansdorff N, Gigot D, Piéard A, Crabeel M. Structural and regulatory mutations allowing utilization of citrulline or carbamoylaspartate as a source of carbamoylphosphate in Escherichia coli K-12. J Bacteriol. 1976 Oct;128(1):39–48. [PMC free article] [PubMed]
  • Legrain C, Stalon V, Noullez JP, Mercenier A, Simon JP, Broman K, Wiame JM. Structure and function of ornithine carbamoyltransferases. Eur J Biochem. 1977 Nov 1;80(2):401–409. [PubMed]
  • Leisinger T, Haas D. N-Acetylglutamate synthase of Escherichia coli regulation of synthesis and activity by arginine. J Biol Chem. 1975 Mar 10;250(5):1690–1693. [PubMed]
  • Lesinger T, Haas D, Hegarty MP. Indospicine as an arginine antagonist in Escherichia coli and Pseudomonas aeruginosa. Biochim Biophys Acta. 1972 Mar 14;262(2):214–219. [PubMed]
  • Fanburg BL, Posner BI. Labeling of RNA in the perfused heart: the problem of bacterial contamination. Biochim Biophys Acta. 1969 Jun 17;182(2):577–579. [PubMed]
  • Li HC, Buchanan JM. Biosynthesis of the purines. 33. Catalytic properties of the glutamine site of formylglycinamide ribonucleotide amidotransferase from chicken liver. J Biol Chem. 1971 Aug 10;246(15):4713–4719. [PubMed]
  • Linn T, Goman M, Scaife J. Lambda transducing bacteriophage carrying deletions of the argCBH-rpoBC region of the Escherichia coli chromosome. J Bacteriol. 1979 Nov;140(2):479–489. [PMC free article] [PubMed]
  • Lissens W, Cunin R, Kelker N, Glansdorff N, Piérard A. In vitro synthesis of Escherichia coli carbamoylphosphate synthase: evidence for participation of the arginine repressor in cumulative repression. J Bacteriol. 1980 Jan;141(1):58–66. [PMC free article] [PubMed]
  • LOUTIT JS. Studies on nutritionally deficient strains of Pseudomonas aeruginosa. I. The production by x-rays and the isolation of nutritionally deficient strains. Aust J Exp Biol Med Sci. 1952 Aug;30(4):287–294. [PubMed]
  • MAAS WK. Studies on repression of arginine biosynthesis in Escherichia coli. Cold Spring Harb Symp Quant Biol. 1961;26:183–191. [PubMed]
  • MAAS WK. STUDIES ON THE MECHANISM OF REPRESSION OF ARGININE BIOSYNTHESIS IN ESCHERICHIA COLI. II. DOMINANCE OF REPRESSIBILITY IN DIPLOIDS. J Mol Biol. 1964 Mar;8:365–370. [PubMed]
  • MAHLER I, NEUMANN IM, MARMUR J. Studies of genetic-units controlling arginine biosynthesis in Bacillus subtilis. Biochim Biophys Acta. 1963 May 28;72:69–79. [PubMed]
  • Makoff AJ, Radford A. Genetics and biochemistry of carbamoyl phosphate biosynthesis and its utilization in the pyrimidine biosynthetic pathway. Microbiol Rev. 1978 Jun;42(2):307–328. [PMC free article] [PubMed]
  • Mann NH, Mountain A, Munton RN, Smith MC, Baumberg S. Transcription analysis of a Bacillus subtilis arg gene following cloning in Escherichia coli in an initially unstable hybrid plasmid. Mol Gen Genet. 1984;197(1):75–81. [PubMed]
  • Marvil DK, Leisinger T. N-acetylglutamate synthase of Escherichia coli: purification, characterization, and molecular properties. J Biol Chem. 1977 May 25;252(10):3295–3303. [PubMed]
  • Matsumoto H, Hosogaya S, Suzuki K, Tazaki T. Arginine gene cluster of Serratia marcescens. Jpn J Microbiol. 1975 Feb;19(1):35–44. [PubMed]
  • Matsumoto H, Tazaki T. Genetic recombination in Klebsiella pneumoniae. An approach to genetic linkage mapping. Jpn J Microbiol. 1970 Mar;14(2):129–141. [PubMed]
  • McLellan WL, Vogel HJ. Translational repression in the arginine system of Escherichia coli. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1703–1709. [PMC free article] [PubMed]
  • McLellan WL, Vogel HJ. Stability of argECBH messenger RNA under arginine excess or restriction. Biochem Biophys Res Commun. 1973 Dec 19;55(4):1385–1389. [PubMed]
  • Mead GC. The amino acid-fermenting clostridia. J Gen Microbiol. 1971 Jul;67(1):47–56. [PubMed]
  • Meister A, Powers SG. Glutamine-dependent carbamyl phosphate synthetase: catalysis and regulation. Adv Enzyme Regul. 1977 Oct 3;16:289–315. [PubMed]
  • Menninger JR, Caplan AB, Gingrich PK, Atherly AG. Tests of the ribosome editor hypothesis. II. Relaxed (relA) and stringent (relA+) E. coli differ in rates of dissociation of peptidyl-tRNA from ribosomes. Mol Gen Genet. 1983;190(2):215–221. [PubMed]
  • Mercenier A, Simon JP, Haas D, Stalon V. Catabolism of L-arginine by Pseudomonas aeruginosa. J Gen Microbiol. 1980 Feb;116(2):381–389. [PubMed]
  • Mercenier A, Simon JP, Vander Wauven C, Haas D, Stalon V. Regulation of enzyme synthesis in the arginine deiminase pathway of Pseudomonas aeruginosa. J Bacteriol. 1980 Oct;144(1):159–163. [PMC free article] [PubMed]
  • Mercenier A, Stalon V, Simon JP, Haas D. Mapping of the arginine deiminase gene in Pseudomonas aeruginosa. J Bacteriol. 1982 Feb;149(2):787–788. [PMC free article] [PubMed]
  • Mergeay M, Gigot D, Beckmann J, Glansdorff N, Piérard A. Physiology and genetics of carbamoylphosphate synthesis in Escherichia coli K12. Mol Gen Genet. 1974;133(4):299–316. [PubMed]
  • Messenguy F. Concerted repression of the synthesis of the arginine biosynthetic enzymes by aminoacids: a comparison between the regulatory mechanisms controlling aminoacid biosyntheses in bacteria and in yeast. Mol Gen Genet. 1979 Jan 16;169(1):85–95. [PubMed]
  • Messenguy F, Wiame J-M. The control of ornithinetranscarbamylase activity by arginase in Saccharomyces cerevisiae. FEBS Lett. 1969 Apr;3(1):47–49. [PubMed]
  • Metzer E, Levitz R, Halpern YS. Isolation and properties of Escherichia coli K-12 mutants impaired in the utilization of gamma-aminobutyrate. J Bacteriol. 1979 Mar;137(3):1111–1118. [PMC free article] [PubMed]
  • Michaels R, Kim KH. Comparative studies of putrescine degradation by microorganisms. Biochim Biophys Acta. 1966 Jan 25;115(1):59–64. [PubMed]
  • Michael R, Tchen TT. Constitutive degradation of putrescine in a Pseudomonas species and its possible physiological significance. Biochem Biophys Res Commun. 1971 Feb 5;42(3):545–549. [PubMed]
  • Miller DL, Rodwell VW. Metabolism of basic amino acids in Pseudomonas putida. Intermediates in L-arginine catabolism. J Biol Chem. 1971 Aug 25;246(16):5053–5058. [PubMed]
  • Mitruka BM, Costilow RN. Arginine and ornithine catabolism by Clostridium botulinum. J Bacteriol. 1967 Jan;93(1):295–301. [PMC free article] [PubMed]
  • MØLLER V. Simplified tests for some amino acid decarboxylases and for the arginine dihydrolase system. Acta Pathol Microbiol Scand. 1955;36(2):158–172. [PubMed]
  • Moore SK, Garvin RT, James E. Nucleotide sequence of the argF regulatory region of Escherichia coli K-12. Gene. 1981 Dec;16(1-3):119–132. [PubMed]
  • Morgan SD, Söll D. Regulation of the biosynthesis of aminoacid: tRNA ligases and of tRNA. Prog Nucleic Acid Res Mol Biol. 1978;21:181–207. [PubMed]
  • Morris DR, Jorstad CM. Isolation of conditionally putrescine-deficient mutants of Escherichia coli. J Bacteriol. 1970 Mar;101(3):731–737. [PMC free article] [PubMed]
  • Mortlock RP. Metabolic acquisitions through laboratory selection. Annu Rev Microbiol. 1982;36:259–284. [PubMed]
  • Mountain A, Baumberg S. Map locations of some mutations conferring resistance to arginine hydroxamate in Bacillus subtilis 168. Mol Gen Genet. 1980;178(3):691–701. [PubMed]
  • Mountain A, Mann NH, Munton RN, Baumberg S. Cloning of a Bacillus subtilis restriction fragment complementing auxotrophic mutants of eight Escherichia coli genes of arginine biosynthesis. Mol Gen Genet. 1984;197(1):82–89. [PubMed]
  • Mountain A, McChesney J, Smith MC, Baumberg S. Gene sequence encoding early enzymes of arginine synthesis within a cluster in Bacillus subtilis, as revealed by cloning in Escherichia coli. J Bacteriol. 1986 Mar;165(3):1026–1028. [PMC free article] [PubMed]
  • Muth WL, Costilow RN. Ornithine cyclase (deaminating). III. Mechanism of the conversion of ornithine to proline. J Biol Chem. 1974 Dec 10;249(23):7463–7467. [PubMed]
  • Nagano H, Zalkin H, Henderson EJ. The anthranilate synthetase-anthranilate-5-phosphorribosylpyrophosphate phosphoribosyltransferase aggregate. On the reaction mechanism of anthranilate synthetase from Salmonella typhimurium. J Biol Chem. 1970 Aug 10;245(15):3810–3820. [PubMed]
  • NAKAMURA K. Separation and properties of DPN and TPN-linked succinic semialdehyde dehydrogenases from Pseudomonas aeruginosa. Biochim Biophys Acta. 1960 Dec 18;45:554–560. [PubMed]
  • Nakamura Y, Uchida H. Isolation of conditionally lethal amber mutations affecting synthesis of the nusA protein of Escherichia coli. Mol Gen Genet. 1983;190(2):196–203. [PubMed]
  • Shinners EN, Catlin BW. Arginine and pyrimidine biosynthetic defects in Neisseria gonorrhoeae strains isolated from patients. J Bacteriol. 1982 Jul;151(1):295–302. [PMC free article] [PubMed]
  • Neidhardt FC, Bloch PL, Pedersen S, Reeh S. Chemical measurement of steady-state levels of ten aminoacyl-transfer ribonucleic acid synthetases in Escherichia coli. J Bacteriol. 1977 Jan;129(1):378–387. [PMC free article] [PubMed]
  • Neihardt FC, Parker J, McKeever WG. Function and regulation of aminoacyl-tRNA synthetases in prokaryotic and eukaryotic cells. Annu Rev Microbiol. 1975;29:215–250. [PubMed]
  • Neway JO, Switzer RL. Purification, characterization, and physiological function of Bacillus subtilis ornithine transcarbamylase. J Bacteriol. 1983 Aug;155(2):512–521. [PMC free article] [PubMed]
  • Neway JO, Switzer RL. Degradation of ornithine transcarbamylase in sporulating Bacillus subtilis cells. J Bacteriol. 1983 Aug;155(2):522–530. [PMC free article] [PubMed]
  • Nichols BP, Miozzari GF, van Cleemput M, Bennett GN, Yanofsky C. Nucleotide sequences of the trpG regions of Escherichia coli, Shigella dysenteriae, Salmonella typhimurium and Serratia marcescens. J Mol Biol. 1980 Oct 5;142(4):503–517. [PubMed]
  • NIRENBERG MW, JAKOBY WB. Enzymatic utilization of gamma-hydroxybutyric acid. J Biol Chem. 1960 Apr;235:954–960. [PubMed]
  • NOE FF, NICKERSON WJ. Metabolism of 2-pyrrolidone and gamma-aminobutyric acid by Pseudomonas aeruginosa. J Bacteriol. 1958 Jun;75(6):674–681. [PMC free article] [PubMed]
  • Nyunoya H, Broglie KE, Lusty CJ. The gene coding for carbamoyl-phosphate synthetase I was formed by fusion of an ancestral glutaminase gene and a synthetase gene. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2244–2246. [PMC free article] [PubMed]
  • Nyunoya H, Broglie KE, Widgren EE, Lusty CJ. Characterization and derivation of the gene coding for mitochondrial carbamyl phosphate synthetase I of rat. J Biol Chem. 1985 Aug 5;260(16):9346–9356. [PubMed]
  • Nyunoya H, Lusty CJ. The carB gene of Escherichia coli: a duplicated gene coding for the large subunit of carbamoyl-phosphate synthetase. Proc Natl Acad Sci U S A. 1983 Aug;80(15):4629–4633. [PMC free article] [PubMed]
  • Nyunoya H, Lusty CJ. Sequence of the small subunit of yeast carbamyl phosphate synthetase and identification of its catalytic domain. J Biol Chem. 1984 Aug 10;259(15):9790–9798. [PubMed]
  • O'Farrell PH. The suppression of defective translation by ppGpp and its role in the stringent response. Cell. 1978 Jul;14(3):545–557. [PubMed]
  • Ottow JC. Arginine dihydrolase activity in species of the genus Bacillus revealed by thin-layer chromatography. J Gen Microbiol. 1974 Sep;84(1):209–213. [PubMed]
  • Padmanabhan R, Tchen TT. Nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-linked succinic semialdehyde dehydrogenases in a Pseudonomas species. J Bacteriol. 1969 Oct;100(1):398–402. [PMC free article] [PubMed]
  • Padmanabhan R, Tchen TT. Aminoaldehyde dehydrogenases from a Pseudomonas species grown on polyamines. Arch Biochem Biophys. 1972 Jun;150(2):531–541. [PubMed]
  • Paluh JL, Zalkin H, Betsch D, Weith HL. Study of anthranilate synthase function by replacement of cysteine 84 using site-directed mutagenesis. J Biol Chem. 1985 Feb 10;260(3):1889–1894. [PubMed]
  • Panchal CJ, Bagchee SN, Guha A. Divergent orientation of transcription from the arginine gene ECBH cluster of Escherichia coli. J Bacteriol. 1974 Feb;117(2):675–680. [PMC free article] [PubMed]
  • Paulin L, Vehmaanperä J, Nykänen I, Pösö H. GTP-insensitive ornithine decarboxylase in acetobacteria able to synthesize spermine. Biochem Biophys Res Commun. 1983 Jul 29;114(2):779–784. [PubMed]
  • Paulus H. The evolutionary history of the ornithine cycle as a determinant of its structure and regulation. Curr Top Cell Regul. 1983;22:177–200. [PubMed]
  • Paulus TJ, Switzer RL. Characterization of pyrimidine-repressible and arginine-repressible carbamyl phosphate synthetases from Bacillus subtilis. J Bacteriol. 1979 Jan;137(1):82–91. [PMC free article] [PubMed]
  • Paulus TJ, Switzer RL. Synthesis and inactivation of carbamyl phosphate synthetase isozymes of Bacillus subtilis during growth and sporulation. J Bacteriol. 1979 Dec;140(3):769–773. [PMC free article] [PubMed]
  • Pandey VN. Interdependence of glucose and arginine catabolism in Streptococcus faecalis R. ATCC 8043. Biochem Biophys Res Commun. 1980 Oct 31;96(4):1480–1487. [PubMed]
  • Penninckx M, Gigot D. Synthesis and interaction with Escherichia coli L-ornithine carbamolytransferase of two potential transition-state analogues. FEBS Lett. 1978 Apr 1;88(1):94–96. [PubMed]
  • Penninckx M, Gigot D. Synthesis of a peptide form of N-delta-(phosphonoacetyl)-L-ornithine. Its antibacterial effect through the specific inhibition of Escherichia coli L-ornithine carbamoyltransferase. J Biol Chem. 1979 Jul 25;254(14):6392–6396. [PubMed]
  • Penninckx M, Simon JP, Wiame JM. Interaction between arginase and L-ornithine carbamoyltransferase in Saccharomyces cerevisiae. Purification of S. cerevisiae enzymes and evidence that these enzymes as well as rat-liver arginase are trimers. Eur J Biochem. 1974 Nov 15;49(2):429–442. [PubMed]
  • Piérard A. Control of the activity of Escherichia coli carbamoyl phosphate synthetase by antagonistic allosteric effectors. Science. 1966 Dec 23;154(3756):1572–1573. [PubMed]
  • Piérard A, Glansdorff N, Mergeay M, Wiame JM. Control of the biosynthesis of carbamoyl phosphate in Escherichia coli. J Mol Biol. 1965 Nov;14(1):23–36. [PubMed]
  • Piérard A, Lissens W, Halleux P, Cunin R, Glansdorff N. Role of transcriptional regulation and enzyme inactivation in the synthesis of Escherichia coli carbamoylphosphate synthase. J Bacteriol. 1980 Jan;141(1):382–385. [PMC free article] [PubMed]
  • Piérard A, Wiame JM. Regulation and mutation affecting a glutamine dependent formation of carbamyl phosphate in Escherichia coli. Biochem Biophys Res Commun. 1964 Feb 18;15(1):76–81. [PubMed]
  • Piette J, Cunin R, Boyen A, Charlier D, Crabeel M, Van Vliet F, Glansdorff N, Squires C, Squires CL. The regulatory region of the divergent argECBH operon in Escherichia coli K-12. Nucleic Acids Res. 1982 Dec 20;10(24):8031–8048. [PMC free article] [PubMed]
  • Piette J, Cunin R, Van Vliet F, Charlier D, Crabeel M, Ota Y, Glansdorff N. Homologous control sites and DNA transcription starts in the related argF and argI genes of Escherichia coli K12. EMBO J. 1982;1(7):853–857. [PMC free article] [PubMed]
  • Piette J, Nyunoya H, Lusty CJ, Cunin R, Weyens G, Crabeel M, Charlier D, Glansdorff N, Piérard A. DNA sequence of the carA gene and the control region of carAB: tandem promoters, respectively controlled by arginine and the pyrimidines, regulate the synthesis of carbamoyl-phosphate synthetase in Escherichia coli K-12. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4134–4138. [PMC free article] [PubMed]
  • Piggot PJ, Hoch JA. Revised genetic linkage map of Bacillus subtilis. Microbiol Rev. 1985 Jun;49(2):158–179. [PMC free article] [PubMed]
  • Pinkus LM, Meister A. Identification of a reactive cysteine residue at the glutamine binding site of carbamyl phosphate synthetase. J Biol Chem. 1972 Oct 10;247(19):6119–6127. [PubMed]
  • Pistorius EK, Voss H. Some properties of a basic L-amino-acid oxidase from Anacystis nidulans. Biochim Biophys Acta. 1980 Feb 14;611(2):227–240. [PubMed]
  • Pistorius EK, Voss H. Presence of an amino acid oxidase in photosystem II of Anacystis nidulans. Eur J Biochem. 1982 Aug;126(1):203–209. [PubMed]
  • Potvin B, Gooder H. Carbamyl phosphate synthesis in Bacillus subtilis. Biochem Genet. 1975 Feb;13(1-2):125–143. [PubMed]
  • Pouwels PH, Cunin R, Glansdorff N. Letter: Divergent transcription in the argECBH cluster of genes in Escherichia coli K12. J Mol Biol. 1974 Mar;83(3):421–424. [PubMed]
  • Powers SG, Meister A. Mechanism of the reaction catalyzed by carbamyl phosphate synthetase. Binding of ATP to the two functionally different ATP sites. J Biol Chem. 1978 Feb 10;253(3):800–803. [PubMed]
  • Prozesky OW. Arginine synthesis in Proteus mirabilis. J Gen Microbiol. 1967 Nov;49(2):325–334. [PubMed]
  • Prozesky OW. Regulation of the arginine pathway in Proteus mirabilis. J Gen Microbiol. 1969 Jan;55(1):89–102. [PubMed]
  • Prozesky OW, Coetzee JN. Linked transduction in Proteus mirabilis. Nature. 1966 Mar 19;209(5029):1262–1262. [PubMed]
  • Prozesky OW, Grabow WO, van der Merwe S, Coetzee JN. Arginine gene clusters in the Proteus-Providence group. J Gen Microbiol. 1973 Jul;77(1):237–240. [PubMed]
  • Rahman M, Laverack PD, Clarke PH. The catabolism of arginine by Pseudomonas aeruginosa. J Gen Microbiol. 1980 Feb;116(2):371–380. [PubMed]
  • Ramos F, Stalon V, Piérard A, Wiame JM. The specialization of the two ornithine carbamoyltransferases of Pseudomonas. Biochim Biophys Acta. 1967 May 16;139(1):98–106. [PubMed]
  • RAZIN S, GERY I, BACHRACH U. The degradation of natural polyamines and diamines by bacteria. Biochem J. 1959 Mar;71(3):551–558. [PMC free article] [PubMed]
  • Reddy P, Peterkofsky A, McKenney K. Translational efficiency of the Escherichia coli adenylate cyclase gene: mutating the UUG initiation codon to GUG or AUG results in increased gene expression. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5656–5660. [PMC free article] [PubMed]
  • Reed DE, Lukens LN. Observations on the conversion of N-acetylglutamate to proline in extracts of Escherichia coli. J Biol Chem. 1966 Jan 25;241(2):264–270. [PubMed]
  • Reznikoff WS, Miller JH, Scaife JG, Beckwith JR. A mechanism for repressor action. J Mol Biol. 1969 Jul 14;43(1):201–213. [PubMed]
  • Rogers P, Kaden TM, Toth M. Repression of Arg mRNA synthesis by L-arginine in cell-free extracts of Escherichia coli. Biochem Biophys Res Commun. 1975 Aug 18;65(4):1284–1291. [PubMed]
  • Rosemblatt MS, Callewaert DM, Tchen TT. Succinic semialdehyde dehydrogenase from a Pseudomonas species. II. Physical and immunochemical properties of the enzyme. J Biol Chem. 1973 Sep 10;248(17):6014–6018. [PubMed]
  • Rosemblatt MS, Callewaert DM, Tchen TT. In vivo subunit hybridization of succinic semialdehyde and 4-aminobutanal dehydrogenases from a Pseudomonas species. Biochemistry. 1974 Sep 24;13(20):4176–4180. [PubMed]
  • Rosenfeld HJ, Roberts J. Arginine decarboxylase from a Pseudomonas species. J Bacteriol. 1976 Feb;125(2):601–607. [PMC free article] [PubMed]
  • Saedler H, Reif HJ, Hu S, Davidson N. IS2, a genetic element for turn-off and turn-on of gene activity in E. coli. Mol Gen Genet. 1974;132(4):265–289. [PubMed]
  • Saint-Girons I, Duchange N, Zakin MM, Park I, Margarita D, Ferrara P, Cohen GN. Nucleotide sequence of metF, the E. coli structural gene for 5-10 methylene tetrahydrofolate reductase and of its control region. Nucleic Acids Res. 1983 Oct 11;11(19):6723–6732. [PMC free article] [PubMed]
  • Sanderson KE, Roth JR. Linkage map of Salmonella typhimurium, Edition VI. Microbiol Rev. 1983 Sep;47(3):410–453. [PMC free article] [PubMed]
  • Satishchandran C, Boyle SM. Antagonistic transcriptional regulation of the putrescine biosynthetic enzyme agmatine ureohydrolase by cyclic AMP and agmatine in Escherichia coli. J Bacteriol. 1984 Feb;157(2):552–559. [PMC free article] [PubMed]
  • Schardl CL, Kado CI. Ti plasmid and chromosomal ornithine catabolism genes of Agrobacterium tumefaciens C58. J Bacteriol. 1983 Jul;155(1):196–202. [PMC free article] [PubMed]
  • Scherer GF, Walkinshaw MD, Arnott S, Morré DJ. The ribosome binding sites recognized by E. coli ribosomes have regions with signal character in both the leader and protein coding segments. Nucleic Acids Res. 1980 Sep 11;8(17):3895–3907. [PMC free article] [PubMed]
  • Scherer P, Kneifel H. Distribution of polyamines in methanogenic bacteria. J Bacteriol. 1983 Jun;154(3):1315–1322. [PMC free article] [PubMed]
  • SCHIMKE RT, BARILE MF. ARGININE METABOLISM IN PLEUROPNEUMONIA-LIKE ORGANISMS ISOLATED FROM MAMMALIAN CELL CULTURE. J Bacteriol. 1963 Aug;86:195–206. [PMC free article] [PubMed]
  • Schimke RT, Berlin CM, Sweeney EW, Carroll WR. The generation of energy by the arginine dihydrolase pathway in Mycoplasma hominis 07. J Biol Chem. 1966 May 25;241(10):2228–2236. [PubMed]
  • SCHMIDT GC, LOGAN MA, TYTELL AA. The degradation of arginine by Clostridium perfringens (BP6K). J Biol Chem. 1952 Oct;198(2):771–783. [PubMed]
  • Schreier HJ, Smith TM, Bernlohr RW. Regulation of nitrogen catabolic enzymes in Bacillus spp. J Bacteriol. 1982 Aug;151(2):971–975. [PMC free article] [PubMed]
  • Sens D, Natter W, Garvin RT, James E. Transcription of the argF and argI genes of the arginine biosynthetic regulon of Escherichia coli K12, performed in vitro. Mol Gen Genet. 1977 Sep 21;155(1):7–18. [PubMed]
  • Sens D, Natter W, James E. In vitro transcription of the Escherichia coli K-12 argA, argE, and argCBH operons. J Bacteriol. 1977 May;130(2):642–655. [PMC free article] [PubMed]
  • Seto B, Stadtman TC. Purification and properties of proline reductase from Clostridium sticklandii. J Biol Chem. 1976 Apr 25;251(8):2435–2439. [PubMed]
  • Shaibe E, Metzer E, Halpern YS. Metabolic pathway for the utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12. J Bacteriol. 1985 Sep;163(3):933–937. [PMC free article] [PubMed]
  • Shaibe E, Metzer E, Halpern YS. Control of utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12. J Bacteriol. 1985 Sep;163(3):938–942. [PMC free article] [PubMed]
  • Simon JP, Stalon V. Enzymes of agmatine degradation and the control of their synthesis in Streptococcus faecalis. J Bacteriol. 1982 Nov;152(2):676–681. [PMC free article] [PubMed]
  • Simon JP, Wargnies B, Stalon V. Control of enzyme synthesis in the arginine deiminase pathway of Streptococcus faecalis. J Bacteriol. 1982 Jun;150(3):1085–1090. [PMC free article] [PubMed]
  • SMITH PF. Conversion of citrulline to ornithine by pleuropneumonialike organisms. J Bacteriol. 1957 Dec;74(6):801–806. [PMC free article] [PubMed]
  • Snellings K, Vermeulen CW. Non-random layout of the amino acid loci on the genome of Escherichia coli. J Mol Biol. 1982 Jun 5;157(4):687–688. [PubMed]
  • Somack R, Costilow RN. Purification and properties of a pyridoxal phosphate and coenzyme B 12 dependent D- -ornithine 5,4-aminomutase. Biochemistry. 1973 Jul 3;12(14):2597–2604. [PubMed]
  • Somack R, Costilow RN. 2,4-diaminopentanoic acid C 4 dehydrogenase. Purification and properties of the protein. J Biol Chem. 1973 Jan 25;248(2):385–388. [PubMed]
  • STADTMAN TC. On the metabolism of an amino acid fermenting Clostridium. J Bacteriol. 1954 Mar;67(3):314–320. [PMC free article] [PubMed]
  • STADTMAN TC, ELLIOTT P. Studies on the enzymic reduction of amino acids. II. Purification and properties of D-proline reductase and a proline racemase from Clostridium sticklandii. J Biol Chem. 1957 Oct;228(2):983–997. [PubMed]
  • STADTMAN TC, WHITE FH., Jr Tracer studies on ornithine, lysine, and formate metabolism in an amino acid fermenting Clostridium. J Bacteriol. 1954 Jun;67(6):651–657. [PMC free article] [PubMed]
  • Stalon V. Regulation of the catabolic ornithine carbamoyltransferase of Pseudomonas fluorescens. A study of the allosteric interactions. Eur J Biochem. 1972 Aug 18;29(1):36–46. [PubMed]
  • Stalon V, Legrain C, Wiame JM. Anabolic ornithine carbamolytransferase of Pseudomonas. The bases of its functional specialization. Eur J Biochem. 1977 Apr 1;74(2):319–327. [PubMed]
  • Stalon V, Mercenier A. L-arginine utilization by Pseudomonas species. J Gen Microbiol. 1984 Jan;130(1):69–76. [PubMed]
  • Stalon V, Ramos F, Piérard A, Wiame JM. The occurrence of a catabolic and an anabolic ornithine carbamoyltransferase in Pseudomonas. Biochim Biophys Acta. 1967 May 16;139(1):91–97. [PubMed]
  • Stalon V, Ramos F, Piérard A, Wiame JM. Regulation of the catabolic ornithine carbamoyltransferase of Pseudomonas fluorescens. A comparison with the anabolic transferase and with a mutationally modified catabolic transferase. Eur J Biochem. 1972 Aug 18;29(1):25–35. [PubMed]
  • Stalon V, Simon JP, Mercenier A. Enzymes of arginine utilization and their formation in Aeromonas formicans NCIB 9232. Arch Microbiol. 1982 Dec 3;133(4):295–299. [PubMed]
  • Stragier P, Danos O, Patte JC. Regulation of diaminopimelate decarboxylase synthesis in Escherichia coli. II. Nucleotide sequence of the lysA gene and its regulatory region. J Mol Biol. 1983 Aug 5;168(2):321–331. [PubMed]
  • Tabor CW, Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. [PubMed]
  • Tabor CW, Tabor H. Polyamines in microorganisms. Microbiol Rev. 1985 Mar;49(1):81–99. [PMC free article] [PubMed]
  • Tesh MJ, Miller RD. Arginine biosynthesis in Legionella pneumophila: absence of N-acetylglutamate synthetase. Can J Microbiol. 1983 Sep;29(9):1230–1233. [PubMed]
  • THORNE KJ, JONES ME. CARBAMYL AND ACETYL PHOSPHOKINASE ACTIVITIES OF STREPTOCOCCUS FAECALIS AND ESCHERICHIA COLI. J Biol Chem. 1963 Sep;238:2992–2998. [PubMed]
  • Trotta PP, Burt ME, Haschemeyer RH, Meister A. Reversible dissociation of carbamyl phosphate synthetase into a regulated synthesis subunit and a subunit required for glutamine utilization. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2599–2603. [PMC free article] [PubMed]
  • Trotta PP, Pinkus LM, Haschemeyer RH, Meister A. Reversible dissociation of the monomer of glutamine-dependent carbamyl phosphate synthetase into catalytically active heavy and light subunits. J Biol Chem. 1974 Jan 25;249(2):492–499. [PubMed]
  • Trudel M, Springer M, Graffe M, Fayat G, Blanquet S, Grunberg-Manago M. Regulation of E.coli phenylalanyl-tRNA synthetase operon in vivo. Biochim Biophys Acta. 1984 May 15;782(1):10–17. [PubMed]
  • Tsuda Y, Friedmann HC. Ornithine metabolism by Clostridium sticklandii. Oxidation of ornithine to 2-amino-4-ketopentanoic acid via 2,4-diaminopentanoic acid; participation of B12 coenzyme, pyridoxal phosphate, and pyridine nucleotide. J Biol Chem. 1970 Nov 25;245(22):5914–5926. [PubMed]
  • Turnbough CL., Jr Regulation of Escherichia coli aspartate transcarbamylase synthesis by guanosine tetraphosphate and pyrimidine ribonucleoside triphosphates. J Bacteriol. 1983 Feb;153(2):998–1007. [PMC free article] [PubMed]
  • Udaka S. Pathway-specific pattern of control of arginine biosynthesis in bacteria. J Bacteriol. 1966 Feb;91(2):617–621. [PMC free article] [PubMed]
  • Udaka S. Isolation of the arginine repressor in Escherichia coli. Nature. 1970 Oct 24;228(5269):336–338. [PubMed]
  • Urm E, Yang H, Zubay G, Kelker N, Maas W. In vitro repression of n- -acetyl-L-ornithinase synthesis in Escherichia coli. Mol Gen Genet. 1973;121(1):1–7. [PubMed]
  • Vanderbilt AS, Gaby NS, Rodwell VW. Intermediates and enzymes between alpha-ketoarginine and gamma-guanidinobutyrate in the L-arginine catabolic pathway of Pseudomonas putida. J Biol Chem. 1975 Jul 25;250(14):5322–5329. [PubMed]
  • Vander Wauven C, Piérard A, Kley-Raymann M, Haas D. Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway. J Bacteriol. 1984 Dec;160(3):928–934. [PMC free article] [PubMed]
  • Vander Wauven C, Stalon V. Occurrence of succinyl derivatives in the catabolism of arginine in Pseudomonas cepacia. J Bacteriol. 1985 Nov;164(2):882–886. [PMC free article] [PubMed]
  • HATT JL, ROCHE J, THOAI NV, TRAN THI AN. Métabolisme des dérivés guanidylés. VI. Dégradation des dérivés guanidiques chez Streptomyces griseus (Waksman). Biochim Biophys Acta. 1956 Nov;22(2):337–341. [PubMed]
  • NGUYEN-VAN-THOAI, OLOMUCKI A. [Arginine decarboxyoxidase. I. Characteristics and nature of the enzyme]. Biochim Biophys Acta. 1962 Jun 4;59:533–544. [PubMed]
  • Nguyen Van Thoai, Thome-Beau F, Olomucki A. Induction et spécificité des enzymes de la nouvelle voie catabolique de l'arginine. Biochim Biophys Acta. 1966 Jan 25;115(1):73–80. [PubMed]
  • Van Vliet F, Cunin R, Jacobs A, Piette J, Gigot D, Lauwereys M, Piérard A, Glansdorff N. Evolutionary divergence of genes for ornithine and aspartate carbamoyl-transferases--complete sequence and mode of regulation of the Escherichia coli argF gene; comparison of argF with argI and pyrB. Nucleic Acids Res. 1984 Aug 10;12(15):6277–6289. [PMC free article] [PubMed]
  • Vargha G, Karsai T, Szabó G. A conditional aerial mycelium-negative mutant of Streptomyces fradiae with deficient ornithine carbamoyltransferase activity. J Gen Microbiol. 1983 Feb;129(2):539–541. [PubMed]
  • Venugopal V, Harikumar P, Doke SN, Kumta US. Regulatory responses of arginine deiminase in whole cells of Clostridium sporogenes. Biochim Biophys Acta. 1975 Oct 22;403(2):521–529. [PubMed]
  • Venugopal V, Nadkarni GB. Regulation of the arginine dihydrolase pathway in Clostridium sporogenes. J Bacteriol. 1977 Aug;131(2):693–695. [PMC free article] [PubMed]
  • Voellmy R, Leisinger T. Dual role for N-2-acetylornithine 5-aminotransferase from Pseudomonas aeruginosa in arginine biosynthesis and arginine catabolism. J Bacteriol. 1975 Jun;122(3):799–809. [PMC free article] [PubMed]
  • Voellym R, Leisinger T. Role of 4-aminobutyrate aminotransferase in the arginine metabolism of Pseudomonas aeruginosa. J Bacteriol. 1976 Dec;128(3):722–729. [PMC free article] [PubMed]
  • Voellmy R, Leisinger T. Regulation of enzyme synthesis in the arginine biosynthetic pathway of Pseudomonas aeruginosa. J Gen Microbiol. 1978 Nov;109(1):25–35. [PubMed]
  • VOGEL HJ, BONNER DM. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed]
  • Vogel HJ, Vogel RH. Enzymes of arginine biosynthesis and their repressive control. Adv Enzymol Relat Areas Mol Biol. 1974;40(0):65–90. [PubMed]
  • VYAS S, MAAS WK. Feedback inhibition of acetylglutamate synthetase by arginine in Escherichia coli. Arch Biochem Biophys. 1963 Mar;100:542–546. [PubMed]
  • Wargnies B, Lauwers N, Stalon V. Structure and properties of the putrescine carbamoyltransferase of Streptococcus faecalis. Eur J Biochem. 1979 Nov 1;101(1):143–152. [PubMed]
  • Wargnies B, Legrain C, Stalon V. Anabolic ornithine carbamoyltransferase of Escherichia coli and catabolic ornithine carbamoyltransferase of Pseudomonas putida. Steady-state kinetic analysis. Eur J Biochem. 1978 Aug 15;89(1):203–212. [PubMed]
  • Weathers PJ, Chee HL, Allen MM. Arginine catabolism in Aphanocapsa 6308. Arch Microbiol. 1978 Jul;118(1):1–6. [PubMed]
  • Werner M, Feller A, Piérard A. Nucleotide sequence of yeast gene CP A1 encoding the small subunit of arginine-pathway carbamoyl-phosphate synthetase. Homology of the deduced amino acid sequence to other glutamine amidotransferases. Eur J Biochem. 1985 Jan 15;146(2):371–381. [PubMed]
  • Yonaha K, Toyama S. gamma-Aminobutyrate:alpha-ketoglutarate aminotransferase from Pseudomonas sp. F-126: purification, crystallization, and enzymologic properties. Arch Biochem Biophys. 1980 Mar;200(1):156–164. [PubMed]
  • Yorifuji T, Ogata K. Arginine racemase of Pseudomonas graveolens. I. Purification, crystallization, and properties. J Biol Chem. 1971 Aug 25;246(16):5085–5092. [PubMed]
  • York MK, Stodolsky M. Characterization of P1argF derivatives from Escherichia coli K12 transduction. I. IS1 elements flank the argF gene segment. Mol Gen Genet. 1981;181(2):230–240. [PubMed]
  • Zaboura M, Halpern YS. Regulation of gamma-aminobutyric acid degradation in Escherichia coli by nitrogen metabolism enzymes. J Bacteriol. 1978 Feb;133(2):447–451. [PMC free article] [PubMed]
  • Zalkin H, Argos P, Narayana SV, Tiedeman AA, Smith JM. Identification of a trpG-related glutamine amide transfer domain in Escherichia coli GMP synthetase. J Biol Chem. 1985 Mar 25;260(6):3350–3354. [PubMed]
  • ZELLER EA, VAN ORDEN LS, VOGTLI W. Enzymology of mycobacteria. VII. Degradation of guanidine derivatives. J Biol Chem. 1954 Jul;209(1):429–435. [PubMed]
  • Zidwick MJ, Keller G, Rogers P. Regulation and coupling of argECBH mRNA and enzyme synthesis in cell extracts of Escherichia coli. J Bacteriol. 1984 Aug;159(2):640–646. [PMC free article] [PubMed]
  • Zidwick MJ, Korshus J, Rogers P. Positive control of expression of the argECBH gene cluster in vitro by guanosine 5'-diphosphate 3'-diphosphate. J Bacteriol. 1984 Aug;159(2):647–651. [PMC free article] [PubMed]
  • Zurawski G, Elseviers D, Stauffer GV, Yanofsky C. Translational control of transcription termination at the attenuator of the Escherichia coli tryptophan operon. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5988–5992. [PMC free article] [PubMed]
  • Zurawski G, Gunsalus RP, Brown KD, Yanofsky C. Structure and regulation of aroH, the structural gene for the tryptophan-repressible 3-deoxy-D-arabino-heptulosonic acid-7-phosphate synthetase of Escherichia coli. J Mol Biol. 1981 Jan 5;145(1):47–73. [PubMed]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • Conserved Domains
    Conserved Domains
    Link to related CDD entry
  • Gene
    Gene
    Gene links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...