• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of microrevMicrobiol Mol Biol Rev ArchivePermissionsJournals.ASM.orgMMBR ArticleJournal InfoAuthorsReviewers
Microbiol Rev. Sep 1984; 48(3): 222–271.
PMCID: PMC373010

The respiratory chains of Escherichia coli.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (11M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Abou-Jaoudé A, Chippaux M, Pascal MC. Formate-nitrite reduction in Escherchia coli K12. 1. Physiological study of the system. Eur J Biochem. 1979 Apr 2;95(2):309–314. [PubMed]
  • Abou-Jaoudé A, Pascal MC, Chippaux M. Formate-nitrite reduction in Escherichia coli K12. 2. Identification of components involved in the electron transfer. Eur J Biochem. 1979 Apr 2;95(2):315–321. [PubMed]
  • Ackrell BA, Asato RN, Mower HF. Multiple forms of bacterial hydrogenases. J Bacteriol. 1966 Oct;92(4):828–838. [PMC free article] [PubMed]
  • Adams MW, Hall DO. Purification of the membrane-bound hydrogenase of Escherichia coli. Biochem J. 1979 Oct 1;183(1):11–22. [PMC free article] [PubMed]
  • Adams MW, Mortenson LE, Chen JS. Hydrogenase. Biochim Biophys Acta. 1980 Dec;594(2-3):105–176. [PubMed]
  • Adler LW, Ichikawa T, Hasan SM, Tsuchiya T, Rosen BP. Orientation of the protonmotive force in membrane vesicles of Escherichia coli. J Supramol Struct. 1977;7(1):15–27. [PubMed]
  • Adler LW, Rosen BP. Functional mosaicism of membrane proteins in vesicles of Escherichia coli. J Bacteriol. 1977 Feb;129(2):959–966. [PMC free article] [PubMed]
  • Alben JO, Moh PP, Fiamingo FG, Altschuld RA. Cytochrome oxidase (a3) heme and copper observed by low-temperature Fourier transform infrared spectroscopy of the CO complex. Proc Natl Acad Sci U S A. 1981 Jan;78(1):234–237. [PMC free article] [PubMed]
  • Alexander K, Young IG. Three hydroxylations incorporating molecular oxygen in the aerobic biosynthesis of ubiquinone in Escherichia coli. Biochemistry. 1978 Oct 31;17(22):4745–4750. [PubMed]
  • Alexander K, Young IG. Alternative hydroxylases for the aerobic and anaerobic biosynthesis of ubiquinone in Escherichia coli. Biochemistry. 1978 Oct 31;17(22):4750–4755. [PubMed]
  • Altendorf KH, Staehelin LA. Orientation of membrane vesicles from Escherichia coli as detected by freeze-cleave electron microscopy. J Bacteriol. 1974 Feb;117(2):888–899. [PMC free article] [PubMed]
  • Amy NK. Identification of the molybdenum cofactor in chlorate-resistant mutants of Escherichia coli. J Bacteriol. 1981 Oct;148(1):274–282. [PMC free article] [PubMed]
  • Andersen KB, von Meyenburg K. Are growth rates of Escherichia coli in batch cultures limited by respiration? J Bacteriol. 1980 Oct;144(1):114–123. [PMC free article] [PubMed]
  • Andrews S, Cox GB, Gibson F. The anaerobic oxidation of dihydroorotate by Escherichia coli K-12. Biochim Biophys Acta. 1977 Oct 12;462(1):153–160. [PubMed]
  • Ashcroft JR, Haddock BA. Synthesis of alternative membrane-bound redox carriers during aerobic growth of Escherichia coli in the presence of potassium cyanide. Biochem J. 1975 May;148(2):349–352. [PMC free article] [PubMed]
  • Azoulay E, Rivière C, Giordano G, Pommier J. Participation of cytochrome b to the in-vitro reconstitution of the membrane-bound formate-nitrate reductase of Escherichia coli K 12 and the possible role of sulfhydryl groups and temperature in the reconstitution process. FEBS Lett. 1977 Jul 15;79(2):321–326. [PubMed]
  • Bachmann BJ. Linkage map of Escherichia coli K-12, edition 7. Microbiol Rev. 1983 Jun;47(2):180–230. [PMC free article] [PubMed]
  • Barnes EM, Jr, Kaback HR. Beta-galactoside transport in bacterial membrane preparations: energy coupling via membrane-bounded D-lactic dehydrogenase. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1190–1198. [PMC free article] [PubMed]
  • Barnes EM, Jr, Kaback HR. Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in Escherichia coli membrane vesicles. J Biol Chem. 1971 Sep 10;246(17):5518–5522. [PubMed]
  • BARRETT J. The prosthetic group of cytochrome a2. Biochem J. 1956 Dec;64(4):626–639. [PMC free article] [PubMed]
  • Barrett J, Sinclair P. The cytochrome c (552) of aerobically grown Escherichia coli str. McElroy and its function. Biochim Biophys Acta. 1967 Jul 5;143(1):279–281. [PubMed]
  • Bar Tana J, Howlett BJ, Koshland DE., Jr Flagellar formation in Escherichia coli electron transport mutants. J Bacteriol. 1977 May;130(2):787–792. [PMC free article] [PubMed]
  • Beelen RH, Feldmann AM, Wijsman HJ. A regulatory gene and a structural gene for alaninase in Escherichia coli. Mol Gen Genet. 1973 Mar 19;121(4):369–374. [PubMed]
  • Bennett R, Taylor DR, Hurst A. D- and L-lactate dehydrogenases in Escherichia coli. Biochim Biophys Acta. 1966 Jun 15;118(3):512–521. [PubMed]
  • Bernhard T, Gottschalk G. Cell yields of Escherichia coli during anaerobic growth on fumarate and molecular hydrogen. Arch Microbiol. 1978 Mar;116(3):235–238. [PubMed]
  • Blake R, Hager LP. Activation of pyruvate oxidase by monomeric and micellar amphiphiles. J Biol Chem. 1978 Mar 25;253(6):1963–1971. [PubMed]
  • Blum H, Poole RK. The molybdenum and iron-sulphur centres of Escherichia coli nitrate reductase are non-randomly oriented in the membrane. Biochem Biophys Res Commun. 1982 Aug;107(3):903–909. [PubMed]
  • Blum H, Poole RK, Ohnishi T. The orientation of iron-sulphur clusters in membrane multilayers prepared from aerobically-grown Escherichia coli K12 and a cytochrome-deficient mutant. Biochem J. 1980 Aug 15;190(2):385–393. [PMC free article] [PubMed]
  • Bonnefoy-Orth V, Lepelletier M, Pascal MC, Chippaux M. Nitrate reductase and cytochrome bnitrate reductase structural genes as parts of the nitrate reductase operon. Mol Gen Genet. 1981;181(4):535–540. [PubMed]
  • Boonstra J, Downie JA, Konings WN. Energy supply for active transport in anaerobically grown Escherichia coli. J Bacteriol. 1978 Dec;136(3):844–853. [PMC free article] [PubMed]
  • Boonstra J, Huttunen MT, Konings WN. Anaerobic transport in Escherichia coli membrane vesicles. J Biol Chem. 1975 Sep 10;250(17):6792–6798. [PubMed]
  • Boonstra J, Konings WN. Generation of an electrochemical proton gradient by nitrate respiration in membrane vesicles from anaerobically grown Escherichia coli. Eur J Biochem. 1977 Sep;78(2):361–368. [PubMed]
  • Boonstra J, Sips HJ, Konings WN. Active transport by membrane vesicles from anaerobically grown Escherichia coli energized by electron transfer to ferricyanide and chlorate. Eur J Biochem. 1976 Oct 1;69(1):35–44. [PubMed]
  • Boxer DH, Clegg RA. A transmembrane location for the proton-translocating reduced ubiquinone leads to nitrate reductase segment of the respiration chain of Escherichia coli. FEBS Lett. 1975 Dec 1;60(1):54–57. [PubMed]
  • Boxer D, Malcolm A, Graham A. Escherichia coli formate to nitrate respiratory pathway: structural analysis. Biochem Soc Trans. 1982 Dec;10(6):480–481. [PubMed]
  • Bragg PD. Effect of near-ultraviolet light on the respiratory chain of Escherichia coli. Can J Biochem. 1971 May;49(5):492–495. [PubMed]
  • Bragg PD, Hou C. Reduced nicotinamide adenine dinucleotide oxidation in Escherichia coli particles. II. NADH dehydrogenases. Arch Biochem Biophys. 1967 Mar;119(1):202–208. [PubMed]
  • BRAGG PD, POLGLASE WJ. ELECTRON-TRANSPORT COMPONENTS OF STREPTOMYCIN-DEPENDENT ESCHERICHIA COLI. J Bacteriol. 1963 Sep;86:544–547. [PMC free article] [PubMed]
  • Bragg PD, Rainnie DJ. The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol. 1974 Jun;20(6):883–889. [PubMed]
  • Bray RC, Vincent SP, Lowe DJ, Clegg RA, Garland PB. Electron-paramagnetic-resonance studies on the molybdenum of nitrate reductase from Escherichia coli K12. Biochem J. 1976 Apr 1;155(1):201–203. [PMC free article] [PubMed]
  • Brock TD. Microbial growth rates in nature. Bacteriol Rev. 1971 Mar;35(1):39–58. [PMC free article] [PubMed]
  • Brookman JJ, Downie JA, Gibson F, Cox GB, Rosenberg H. Proton translocation in cytochrome-deficient mutants of Escherichia coli. J Bacteriol. 1979 Feb;137(2):705–710. [PMC free article] [PubMed]
  • Bullock PA, Myer YP. Circular dichroism and resonance Raman studies of cytochrome b562 from Escherichia coli. Biochemistry. 1978 Jul 25;17(15):3084–3091. [PubMed]
  • Burstein C, Tiankova L, Kepes A. Respiratory control in Escherichia coli K 12. Eur J Biochem. 1979 Mar;94(2):387–392. [PubMed]
  • Butler WL. Fourth derivative spectra. Methods Enzymol. 1979;56:501–515. [PubMed]
  • Cammack R, Jackson RH, Cornish-Bowden A, Cole JA. Electron-spin-resonance studies of the NADH-dependent nitrite reductase from Escherichia coli K12. Biochem J. 1982 Nov 1;207(2):333–339. [PMC free article] [PubMed]
  • Capaldi RA, Sweetland J, Merli A. Polypeptides in the succinate-coenzyme Q reductase segment of the respiratory chain. Biochemistry. 1977 Dec 27;16(26):5707–5710. [PubMed]
  • CASTOR LN, CHANCE B. Photochemical action spectra of carbon monoxide-inhibited respiration. J Biol Chem. 1955 Nov;217(1):453–465. [PubMed]
  • CASTOR LN, CHANCE B. Photochemical determinations of the oxidases of bacteria. J Biol Chem. 1959 Jun;234(6):1587–1592. [PubMed]
  • Chance B. Cytochrome kinetics at low temperatures: trapping and ligand exchange. Methods Enzymol. 1978;54:102–111. [PubMed]
  • Chance B, Saronio C, Leigh JS., Jr Functional intermediates in the reaction of membrane-bound cytochrome oxidase with oxygen. J Biol Chem. 1975 Dec 25;250(24):9226–9237. [PubMed]
  • Chance B, Saronio C, Leigh JS., Jr Compound C2, a product of the reaction of oxygen and the mixed-valence state of cytochrome oxidase. Optical evidence for a type-I copper. Biochem J. 1979 Mar 1;177(3):931–941. [PMC free article] [PubMed]
  • Chang YY, Cronan JE., Jr Mapping nonselectable genes of Escherichia coli by using transposon Tn10: location of a gene affecting pyruvate oxidase. J Bacteriol. 1982 Sep;151(3):1279–1289. [PMC free article] [PubMed]
  • Chang YY, Cronan JE., Jr Genetic and biochemical analyses of Escherichia coli strains having a mutation in the structural gene (poxB) for pyruvate oxidase. J Bacteriol. 1983 May;154(2):756–762. [PMC free article] [PubMed]
  • Chaudhry GR, Chaiken IM, MacGregor CH. An activity from Escherichia coli membranes responsible for the modification of nitrate reductase to its precursor form. J Biol Chem. 1983 May 10;258(9):5828–5833. [PubMed]
  • Chaudhry GR, MacGregor CH. Escherichia coli nitrate reductase subunit A: its role as the catalytic site and evidence for its modification. J Bacteriol. 1983 Apr;154(1):387–394. [PMC free article] [PubMed]
  • Chaudhry GR, MacGregor CH. Cytochrome b from Escherichia coli nitrate reductase. Its properties and association with the enzyme complex. J Biol Chem. 1983 May 10;258(9):5819–5827. [PubMed]
  • Chippaux M, Bonnefoy-Orth V, Ratouchniak J, Pascal MC. Operon fusions in the nitrate reductase operon and study of the control gene nir R in Escherichia coli. Mol Gen Genet. 1981;182(3):477–479. [PubMed]
  • Clark D, Cronan JE., Jr Escherichia coli mutants with altered control of alcohol dehydrogenase and nitrate reductase. J Bacteriol. 1980 Jan;141(1):177–183. [PMC free article] [PubMed]
  • Clegg RA. Purification and some properties of nitrate reductase (EC 1.7.99.4) from Escherichia coli K12. Biochem J. 1976 Mar 1;153(3):533–541. [PMC free article] [PubMed]
  • Coakley WT, Bater AJ, Lloyd D. Disruption of micro-organisms. Adv Microb Physiol. 1977;16:279–341. [PubMed]
  • COHEN GN, RICKENBERG HV. Concentration spécifique réversible des amino acides chez Escherichia coli. Ann Inst Pasteur (Paris) 1956 Nov;91(5):693–720. [PubMed]
  • Cole JA. Cytochrome c552 and nitrite reduction in Escherichia coli. Biochim Biophys Acta. 1968 Oct 1;162(3):356–368. [PubMed]
  • Cole JA. Independent pathways for the anaerobic reduction of nitrite to ammonia by Escherichia coli. Biochem Soc Trans. 1982 Dec;10(6):476–478. [PubMed]
  • Cole JA, Coleman KJ, Compton BE, Kavanagh BM, Keevil CW. Nitrite and ammonia assimilation by anaerobic continuous cultures of Escherichia coli. J Gen Microbiol. 1974 Nov;85(1):11–22. [PubMed]
  • Cole JA, Newman BM, White P. Biochemical and genetic characterization of nirB mutants of Escherichia coli K 12 pleiotropically defective in nitrite and sulphite reduction. J Gen Microbiol. 1980 Oct;120(2):475–483. [PubMed]
  • Cole ST. Nucleotide sequence coding for the flavoprotein subunit of the fumarate reductase of Escherichia coli. Eur J Biochem. 1982 Mar 1;122(3):479–484. [PubMed]
  • Cole ST, Grundström T, Jaurin B, Robinson JJ, Weiner JH. Location and nucleotide sequence of frdB, the gene coding for the iron-sulphur protein subunit of the fumarate reductase of Escherichia coli. Eur J Biochem. 1982 Aug;126(1):211–216. [PubMed]
  • Cole ST, Guest JR. Production of a soluble form of fumarate reductase by multiple gene duplication in Escherichia coli K12. Eur J Biochem. 1979 Dec;102(1):65–71. [PubMed]
  • Cole ST, Guest JR. Amplification of fumarate reductase synthesis with lambdafrdA transducing phages and orientation of frdA gene expression. Mol Gen Genet. 1980;179(2):377–385. [PubMed]
  • Cole ST, Guest JR. Molecular genetic aspects of the succinate: fumarate oxidoreductases of Escherichia coli. Biochem Soc Trans. 1982 Dec;10(6):473–475. [PubMed]
  • Coleman KJ, Cornish-Bowden A, Cole JA. Purification and properties of nitrite reductase from Escherichia coli K12. Biochem J. 1978 Nov 1;175(2):483–493. [PMC free article] [PubMed]
  • Cox GB, Newton NA, Gibson F, Snoswell AM, Hamilton JA. The function of ubiquinone in Escherichia coli. Biochem J. 1970 Apr;117(3):551–562. [PMC free article] [PubMed]
  • Cox GB, Young IG, McCann LM, Gibson F. Biosynthesis of ubiquinone in Escherichia coli K-12: location of genes affecting the metabolism of 3-octaprenyl-4-hydroxybenzoic acid and 2-octaprenylphenol. J Bacteriol. 1969 Aug;99(2):450–458. [PMC free article] [PubMed]
  • Cox JC, Edwards ES, DeMoss JA. Resolution of distinct selenium-containing formate dehydrogenases from Escherichia coli. J Bacteriol. 1981 Mar;145(3):1317–1324. [PMC free article] [PubMed]
  • Creaghan IT, Guest JR. Amber mutants of the -ketoglutarate dehydrogenase gene of Escherichia coli K12. J Gen Microbiol. 1972 Jul;71(2):207–220. [PubMed]
  • Sánchez Crispín JA, Dubourdieu M, Chippaux M. Localization and characterization of cytochromes from membrane vesicles of Escherichia coli K-12 grown in anaerobiosis with nitrate. Biochim Biophys Acta. 1979 Aug 14;547(2):198–210. [PubMed]
  • Csonka LN, Fraenkel DG. Pathways of NADPH formation in Escherichia coli. J Biol Chem. 1977 May 25;252(10):3382–3391. [PubMed]
  • Cunningham CC, Hager LP. Crystalline pyruvate oxidase from Escherichia coli. 3. Phospholipid as an allosteric effector for the enzyme. J Biol Chem. 1971 Mar 25;246(6):1583–1589. [PubMed]
  • Cunningham CC, Hager LP. Reactivation of the lipid-depleted pyruvate oxidase system from Escherichia coli with cell envelope neutral lipids. J Biol Chem. 1975 Sep 25;250(18):7139–7146. [PubMed]
  • Czerwinski EW, Mathews FS. Location of the iron atom and the non-crystallographic symmetry elements in cytochrome b562. J Mol Biol. 1974 Jun 15;86(1):49–57. [PubMed]
  • Czerwinski EW, Mathews FS, Hollenberg P, Drickamer K, Hager LP. Crystallographic study of cytochrome b 562 from Escherichia coli. J Mol Biol. 1972 Nov 28;71(3):819–821. [PubMed]
  • Dancey GF, Levine AE, Shapiro BM. The NADH dehydrogenase of the respiratory chain of Escherichia coli. I. Properties of the membrane-bound enzyme, its solubilization, and purification to near homogeneity. J Biol Chem. 1976 Oct 10;251(19):5911–5920. [PubMed]
  • Dancey GF, Shapiro BM. The NADH dehydrogenase of the respiratory chain of Escherichia coli. II. Kinetics of the purified enzyme and the effects of antibodies elicited against it on membrane-bound and free enzyme. J Biol Chem. 1976 Oct 10;251(19):5921–5928. [PubMed]
  • Daoud MS, Haddock BA. Electron transport in mutants of Escherichia coli deficient in their ability to synthesize adenosine 3':5'-cyclic monophosphate and the catabolite-gene activator protein. Biochem Soc Trans. 1976;4(4):711–714. [PubMed]
  • DEEB SS, HAGER LP. CRYSTALLINE CYTOCHROME B1 FROM ESCHERICHIA COLI. J Biol Chem. 1964 Apr;239:1024–1031. [PubMed]
  • DeMoss JA. Limited proteolysis of nitrate reductase purified from membranes of Escherichia coli. J Biol Chem. 1977 Mar 10;252(5):1696–1701. [PubMed]
  • Demoss JA, Fan TY, Scott RH. Characterization of subunit structural alterations which occur during purification of nitrate reductase from Escherichia coli. Arch Biochem Biophys. 1981 Jan;206(1):54–64. [PubMed]
  • Dervartanian DV, Iburg LK, Morgan TV. EPR studies on phosphorylating particles from Azotobacter vinelandii. Biochim Biophys Acta. 1973 Apr 27;305(1):173–178. [PubMed]
  • de Silva AO, Fraenkel DG. The 6-phosphogluconate dehydrogenase reaction in Escherichia coli. J Biol Chem. 1979 Oct 25;254(20):10237–10242. [PubMed]
  • Devor KA, Schairer HU, Renz D, Overath P. Active transport of beta-galactosides by a mutant of Escherichia coli defective in heme synthesis. Eur J Biochem. 1974 Jun 15;45(2):451–456. [PubMed]
  • Dickie P, Weiner JH. Purification and characterization of membrane-bound fumarate reductase from anaerobically grown Escherichia coli. Can J Biochem. 1979 Jun;57(6):813–821. [PubMed]
  • Porra RJ, Barnes R, Jones OT. The over-production of porphyrins by semi-anaerobic yeast. Enzyme. 1973;16(1):1–8. [PubMed]
  • Doss M, Philipp-Dormston WK. The effect of DL-lactate on regulation of porphyrin and heme biosynthesis in Escherichia coli and Achromobacter. FEBS Lett. 1974 Mar 15;40(1):173–175. [PubMed]
  • Douglas MW, Ward FB, Cole JA. The formate hydrogenlyase activity of cytochrome c552-deficient mutants of Escherichia coli K12. J Gen Microbiol. 1974 Feb;80(2):557–560. [PubMed]
  • Downie JA, Cox GB. Sequence of b cytochromes relative to ubiquinone in the electron transport chain of Escherichia coli. J Bacteriol. 1978 Feb;133(2):477–484. [PMC free article] [PubMed]
  • Downie JA, Gibson F, Cox GB. Membrane adenosine triphosphatases of prokaryotic cells. Annu Rev Biochem. 1979;48:103–131. [PubMed]
  • Edgar JR, Bell RM. Biosynthesis in Escherichia coli of sn-glycerol 3-phosphate, a precursor of phospholipid. Palmitoyl-CoA inhibition of the biosynthetic sn-glycerol-3-phosphate dehydrogenase. J Biol Chem. 1979 Feb 25;254(4):1016–1021. [PubMed]
  • Edlund T, Grundström T, Normark S. Isolation and characterization of DNA repetitions carrying the chromosomal beta-lactamase gene of Escherichia coli K-12. Mol Gen Genet. 1979 Jun 7;173(2):115–125. [PubMed]
  • Edwards C, Beer S, Siviram A, Chance B. Photochemical action spectra of bacterial a- and o-type oxidases using a dye laser. FEBS Lett. 1981 Jun 15;128(2):205–207. [PubMed]
  • Edwards ES, Rondeau SS, DeMoss JA. chlC (nar) operon of Escherichia coli includes structural genes for alpha and beta subunits of nitrate reductase. J Bacteriol. 1983 Mar;153(3):1513–1520. [PMC free article] [PubMed]
  • Enoch HG, Lester RL. The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli. J Biol Chem. 1975 Sep 10;250(17):6693–6705. [PubMed]
  • Esfahani M, Rudkin BB, Cutler CJ, Waldron PE. Lipid-protein interactions in membranes: interaction of phospholipids with respiratory enzymes of Escherichia coli membrane. J Biol Chem. 1977 May 25;252(10):3194–3198. [PubMed]
  • Evans JB. Preparation of synchronous cultures of Escherichia coli by continuous-flow size selection. J Gen Microbiol. 1975 Nov;91(1):188–190. [PubMed]
  • Farmer IS, Jones CW. The energetics of Escherichia coli during aerobic growth in continuous culture. Eur J Biochem. 1976 Aug 1;67(1):115–122. [PubMed]
  • Fimmel AL, Haddock BA. Use of chlC-lac fusions to determine regulation of gene chlC in Escherichia coli K-12. J Bacteriol. 1979 Jun;138(3):726–730. [PMC free article] [PubMed]
  • Forget P. The bacterial nitrate reductases. Solubilization, purification and properties of the enzyme A of Escherichia coli K 12. Eur J Biochem. 1974 Mar 1;42(2):325–332. [PubMed]
  • Forget P, Dubourdieu M. Evidence for the presence of a small subunit as the principal component of the nitrate reductase of Escherichia Coli K 12. Biochem Biophys Res Commun. 1982 Mar 30;105(2):450–456. [PubMed]
  • Forget P. Evidence for the presence of carbohydrate units in the nitrate reductase A of Escherichia coli K12. FEBS Lett. 1977 May 15;77(2):182–186. [PubMed]
  • FRANK L, RANHAND B. PROLINE METABOLISM IN ESCHERICHIA COLI. 3. THE PROLINE CATABOLIC PATHWAY. Arch Biochem Biophys. 1964 Aug;107:325–331. [PubMed]
  • FRANK L, RYBICKI P. Studies of proline metabolism in Escherichia coli. I. The degradation of proline during growth of a proline-requiring auxotroph. Arch Biochem Biophys. 1961 Dec;95:441–449. [PubMed]
  • Franklin FC, Venables WA. Biochemical, genetic, and regulatory studies of alanine catabolism in Escherichia coli K12. Mol Gen Genet. 1976 Dec 8;149(2):229–237. [PubMed]
  • Franklin FC, Venables WA, Wijsman HJ. Genetic studies of D-alanine-dehydrogenase-less mutants of Escherichia coli K12. Genet Res. 1981 Oct;38(2):197–208. [PubMed]
  • Fujita T. Studies on soluble cytochromes in Enterobacteriaceae. II. Cytochromes b-562 and c-550. J Biochem. 1966 Sep;60(3):329–334. [PubMed]
  • FUJITA T, ITAGAKI E, SATO R. Purification and properties of cytochrome bl from Escherichia coli. J Biochem. 1963 Apr;53:282–290. [PubMed]
  • Fujita T, Sato R. Studies on soluble cytochromes in Enterobacteriaceae. IV. Possible involvement of cytochrome c-552 in anaerobic nitrite metabolism. J Biochem. 1966 Dec;60(6):691–700. [PubMed]
  • Fujita T, Sato Y. Studies on soluble cytochromes in Enterobacteriaceae. V. Nitrite-dependent gas evolution in cells containing cytochrome c-552. J Biochem. 1967 Aug;62(2):230–238. [PubMed]
  • Fukuyama T, Ordal EJ. Induced Biosynthesis of Formic Hydrogenlyase in Iron-Deficient Cells of Escherichia coli. J Bacteriol. 1965 Sep;90(3):673–680. [PMC free article] [PubMed]
  • Fung LW, Pratt EA, Ho C. Biochemical and biophysical studies on the interaction of a membrane-bound enzyme, D-lactate dehydrogenase from Escherichia coli, with phospholipids. Biochemistry. 1979 Jan 23;18(2):317–324. [PubMed]
  • Futai M. Membrane D-lactate dehydrogenase from Escherichia coli. Purification and properties. Biochemistry. 1973 Jun 19;12(13):2468–2474. [PubMed]
  • Futai M. Reconstitution of transport dependent on D-lactate or glycerol 3-phosphate in membrane vesicles of Escherichia coli deficient in the corresponding dehydrogenases. Biochemistry. 1974 May 21;13(11):2327–2333. [PubMed]
  • Futai M. Orientation of membrane vesicles from Escherichia coli prepared by different procedures. J Membr Biol. 1974;15(1):15–28. [PubMed]
  • Futai M, Kimura H. Inducible membrane-bound L-lactate dehydrogenase from Escherichia coli. Purification and properties. J Biol Chem. 1977 Aug 25;252(16):5820–5827. [PubMed]
  • Futai M, Tanaka Y. Localization of D-lactate dehydrogenase in membrane vesicles prepared by using a french press or ethylenediaminetetraacetate-lysozyme from Escherichia coli. J Bacteriol. 1975 Oct;124(1):470–475. [PMC free article] [PubMed]
  • Garland PB, Davison MT, Moore CH. Rotational mobility of membrane-bound cytochrome o of Escherichia coli and cytochrome a1 of Thiobacillus ferro-oxidans [proceedings]. Biochem Soc Trans. 1979 Oct;7(5):1112–1114. [PubMed]
  • Garland PB, Downie JA, Haddock BA. Proton translocation and the respiratory nitrate reductase of Escherichia coli. Biochem J. 1975 Dec;152(3):547–559. [PMC free article] [PubMed]
  • Garland PB, Johnson K, Reid GR. The diffusional mobility of proteins in the cytoplasmic membrane of Escherichia coli. Biochem Soc Trans. 1982 Dec;10(6):484–485. [PubMed]
  • Garvie EI. Bacterial lactate dehydrogenases. Microbiol Rev. 1980 Mar;44(1):106–139. [PMC free article] [PubMed]
  • George-Nascimento C, Wakil SJ, Short SA, Kaback HR. Effect of lipids on the reconstitution of D-lactate oxidase in Escherichia coli membrane vesicles. J Biol Chem. 1976 Nov 10;251(21):6662–6666. [PubMed]
  • Gerolimatos B, Hanson RL. Repression of Escherichia coli pyridine nucleotide transhydrogenase by leucine. J Bacteriol. 1978 May;134(2):394–400. [PMC free article] [PubMed]
  • Gilbert P, Beveridge EG, Crone PB. Inhibition of some respiration and dehydrogenase enzyme systems in Escherichia coli NCTC 5933 by phenoxyethanol. Microbios. 1977;20(79):29–37. [PubMed]
  • Giordano G, Graham A, Boxer DH, Haddock BA, Azoulay E. Characterization of the membrane-bound nitrate reductase activity of aerobically grown chlorate-sensitive mutants of Escherichia coli K12. FEBS Lett. 1978 Nov 15;95(2):290–294. [PubMed]
  • Giordano G, Grillet L, Pommier J, Terriere C, Haddock BA, Azoulay E. Precursor forms of the subunits of nitrate reductase in chlA and chlB mutants of Escherichia coli K12. Eur J Biochem. 1980 Apr;105(2):297–306. [PubMed]
  • Giordano G, Grillet L, Rosset R, Dou JH, Azoulay E, Haddock BA. Characterization of an Escherichia coli K12 mutant that is sensitive to chlorate when grown aerobically. Biochem J. 1978 Nov 15;176(2):553–561. [PMC free article] [PubMed]
  • Giordano G, Rivière C, Azoulay E. Oxidative phosphorylation in intact chl-r mutants of Escherichia coli K 12. Biochimie. 1977;59(4):403–409. [PubMed]
  • Girdlestone J, Bisson R, Capaldi RA. Interaction of succinate--ubiquinone reductase (complex II) with (arylazido)phospholipids. Biochemistry. 1981 Jan 6;20(1):152–156. [PubMed]
  • Glaser JH, DeMoss JA. Phenotypic restoration by molybdate of nitrate reductase activity in chlD mutants of Escherichia coli. J Bacteriol. 1971 Nov;108(2):854–860. [PMC free article] [PubMed]
  • Glick BR, Wang PY, Schneider H, Martin WG. Identification and partial characterization of an Escherichia coli mutant with altered hydrogenase activity. Can J Biochem. 1980 Apr;58(4):361–367. [PubMed]
  • Goldberg I, Lonberg-Holm K, Bagley EA, Stieglitz B. Improved conversion of fumarate to succinate by Escherichia coli strains amplified for fumarate reductase. Appl Environ Microbiol. 1983 Jun;45(6):1838–1847. [PMC free article] [PubMed]
  • Graham A. The organization of hydrogenase in the cytoplasmic membrane of Escherichia coli. Biochem J. 1981 Aug 1;197(2):283–291. [PMC free article] [PubMed]
  • Graham A, Boxer DH. Immunochemical localization of nitrate reductase in Escherichia coli [proceedings]. Biochem Soc Trans. 1978;6(6):1210–1211. [PubMed]
  • Graham A, Boxer DH. Implication of alpha-subunit of Escherichia coli nitrate reductase in catalytic activity [proceedings]. Biochem Soc Trans. 1980 Jun;8(3):329–330. [PubMed]
  • Graham A, Boxer DH. The membrane location of the beta-subunit of nitrate reductase from Escherichia coli [proceedings]. Biochem Soc Trans. 1980 Jun;8(3):331–331. [PubMed]
  • Graham A, Boxer DH. Arrangement of respiratory nitrate reductase in the cytoplasmic membrane of Escherichia coli. Location of beta subunit. FEBS Lett. 1980 Apr 21;113(1):15–20. [PubMed]
  • Graham A, Boxer DH. The organization of formate dehydrogenase in the cytoplasmic membrane of Escherichia coli. Biochem J. 1981 Jun 1;195(3):627–637. [PMC free article] [PubMed]
  • Graham A, Boxer DH, Haddock BA, Mandrand-Berthelot AM, Jones RW. Immunochemical analysis of the membrane-bound hydrogenase of Escherichia coli. FEBS Lett. 1980 May 5;113(2):167–172. [PubMed]
  • GRAY CT, GEST H. BIOLOGICAL FORMATION OF MOLECULAR HYDROGEN. Science. 1965 Apr 9;148(3667):186–192. [PubMed]
  • Gray CT, Wimpenny JW, Hughes DE, Mossman MR. Regulation of metabolism in facultative bacteria. I. Structural and functional changes in Escherichia coli associated with shifts between the aerobic and anaerobic states. Biochim Biophys Acta. 1966 Mar 28;117(1):22–32. [PubMed]
  • GRAY CT, WIMPENNY JW, HUGHES DE, RANLETT M. A soluble c-type cytochrome from anaerobically grown Escherichia coli and various Enterobacteriaceae. Biochim Biophys Acta. 1963 Jan 8;67:157–160. [PubMed]
  • Green GN, Gennis RB. Isolation and characterization of an Escherichia coli mutant lacking cytochrome d terminal oxidase. J Bacteriol. 1983 Jun;154(3):1269–1275. [PMC free article] [PubMed]
  • Grundström T, Jaurin B. Overlap between ampC and frd operons on the Escherichia coli chromosome. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1111–1115. [PMC free article] [PubMed]
  • Guest JR. Menaquinone biosynthesis: mutants of Escherichia coli K-12 requiring 2-succinylbenzoate. J Bacteriol. 1977 Jun;130(3):1038–1046. [PMC free article] [PubMed]
  • Guest JR. Partial replacement of succinate dehydrogenase function by phage- and plasmid-specified fumarate reductase in Escherichia coli. J Gen Microbiol. 1981 Feb;122(2):171–179. [PubMed]
  • Guest JR, Shaw DJ. Molecular cloning of menaquinone biosynthetic genes of Escherichia coli K12. Mol Gen Genet. 1981;181(3):379–383. [PubMed]
  • Gutman M, Schejter A, Avi-Dor Y. The preparation and properties of the membranal DPNH dehydrogenase from Escherichia coli. Biochim Biophys Acta. 1968 Nov 26;162(4):506–517. [PubMed]
  • Gutowski SJ, Rosenberg H. Effects of dicyclohexylcarbodi-imide on proton translocation coupled to fumarate reduction in anaerobically grown cells of Escherichia coli K-12. Biochem J. 1976 Dec 15;160(3):813–816. [PMC free article] [PubMed]
  • Gutowski SJ, Rosenberg H. Proton translocation coupled to electron flow from endogenous substrates to fumarate in anaerobically grown Escherichia coli K12. Biochem J. 1977 Apr 15;164(1):265–267. [PMC free article] [PubMed]
  • Guynn RW, Veech RL. The equilibrium constants of the adenosine triphosphate hydrolysis and the adenosine triphosphate-citrate lyase reactions. J Biol Chem. 1973 Oct 25;248(20):6966–6972. [PubMed]
  • Hackett CS, MacGregor CH. Synthesis and degradation of nitrate reductase in Escherichia coli. J Bacteriol. 1981 Apr;146(1):352–359. [PMC free article] [PubMed]
  • Hackett NR, Bragg PD. Membrane cytochromes of Escherichia coli grown aerobically and anaerobically with nitrate. J Bacteriol. 1983 May;154(2):708–718. [PMC free article] [PubMed]
  • Hackett NR, Bragg PD. Membrane cytochromes of Escherichia coli chl mutants. J Bacteriol. 1983 May;154(2):719–727. [PMC free article] [PubMed]
  • Haddock BA. The reconstitution of oxidase activity in membranes derived from a 5-aminolaevulinic acid-requiring mutant of Escherichia coli. Biochem J. 1973 Dec;136(4):877–884. [PMC free article] [PubMed]
  • Haddock BA, Downie JA. The reconstitution of functional respiratory chains in membranes from electron-transport-deficient mutants of Escherichia coli as demonstrated by quenching of atebrin fluorescence. Biochem J. 1974 Sep;142(3):703–706. [PMC free article] [PubMed]
  • Haddock BA, Downie JA, Garland PB. Kinetic characterization of the membrane-bound cytochromes of Escherichia coli grown under a variety of conditions by using a stopped-flow dual-wavelength spectrophotometer. Biochem J. 1976 Feb 15;154(2):285–294. [PMC free article] [PubMed]
  • Haddock BA, Jones CW. Bacterial respiration. Bacteriol Rev. 1977 Mar;41(1):47–99. [PMC free article] [PubMed]
  • Haddock BA, Kendall-Tobias MW. Functional anaerobic electron transport linked to the reduction of nitrate and fumarate in membranes from Escherichia coli as demonstrated by quenching of atebrin fluorescence. Biochem J. 1975 Dec;152(3):655–659. [PMC free article] [PubMed]
  • Haddock BA, Mandrand-Berthelot MA. Escherichia coli formate-to-nitrate respiratory chain: genetic analysis. Biochem Soc Trans. 1982 Dec;10(6):478–480. [PubMed]
  • Haddock BA, Schairer HU. Electron-transport chains of Escherichia coli. Reconstitution of respiration in a 5-aminolaevulinic acid-requiring mutant. Eur J Biochem. 1973 May;35(1):34–45. [PubMed]
  • Haldar K, Olsiewski PJ, Walsh C, Kaczorowski GJ, Bhaduri A, Kaback HR. Simultaneous reconstitution of Escherichia coli membrane vesicles with D-lactate and D-amino acid dehydrogenases. Biochemistry. 1982 Sep 14;21(19):4590–4596. [PubMed]
  • Hamilton JA, Cox GB, Looney FD, Gibson F. Ubisemiquinone in membranes from Escherichia coli. Biochem J. 1970 Jan;116(2):319–320. [PMC free article] [PubMed]
  • Hanson RL, Rose C. Effects of an insertion mutation in a locus affecting pyridine nucleotide transhydrogenase (pnt::Tn5) on the growth of Escherichia coli. J Bacteriol. 1980 Jan;141(1):401–404. [PMC free article] [PubMed]
  • Harrison DE. The regulation of respiration rate in growing bacteria. Adv Microb Physiol. 1976;14(11):243–313. [PubMed]
  • Hatefi Y, Galante YM. Isolation of cytochrome b560 from complex II (succinateùbiquinone oxidoreductase) and its reconstitution with succinate dehydrogenase. J Biol Chem. 1980 Jun 25;255(12):5530–5537. [PubMed]
  • Hederstedt L, Holmgren E, Rutberg L. Characterization of a succinate dehydrogenase complex solubilized from the cytoplasmic membrane of Bacillus subtilis with the nonionic detergent Triton X-100. J Bacteriol. 1979 May;138(2):370–376. [PMC free article] [PubMed]
  • Hederstedt L, Rutberg L. Succinate dehydrogenase--a comparative review. Microbiol Rev. 1981 Dec;45(4):542–555. [PMC free article] [PubMed]
  • Hellingwerf KJ, Bolscher JG, Konings WN. The electrochemical proton gradient generated by the fumarate-reductase system in Escherichia coli and its bioenergetic implications. Eur J Biochem. 1981 Jan;113(2):369–374. [PubMed]
  • Hendler RW. Automated electrodic potentiometry of potassium ferricyanide and respiratory components. Anal Chem. 1977 Nov;49(13):1914–1918. [PubMed]
  • Hendler RW, Burgess AH. Respiration and protein synthesis in Escherichia coli membrane-envelope fragments. VI. Solubilization and characterization of the electron transport chain. J Cell Biol. 1972 Nov;55(2):266–281. [PMC free article] [PubMed]
  • Hendler RW, Burgess AH. Fractionation of the electron-transport chain of Escherichia coli. Biochim Biophys Acta. 1974 Aug 23;357(2):215–230. [PubMed]
  • Hendler RW, Nanninga N. Respiration and protein synthesis in Escherichia coli membrane-envelope fragments. 3. Electron microscopy and analysis of the cytochromes. J Cell Biol. 1970 Jul;46(1):114–129. [PMC free article] [PubMed]
  • Hendler RW, Shrager RI. Potentiometric analysis of Escherichia coli cytochromes in the optical absorbance range of 500 nm to 700 nm. J Biol Chem. 1979 Nov 25;254(22):11288–11299. [PubMed]
  • Hendler RW, Towne DW, Shrager RI. Redox properties of beta-type cytochromes in Escherichia coli and rat liver mitochondria and techniques for their analysis. Biochim Biophys Acta. 1975 Jan 31;376(1):42–62. [PubMed]
  • HIRSCH CA, RASMINSKY M, DAVIS BD, LIN EC. A FUMARATE REDUCTASE IN ESCHERICHIA COLI DISTINCT FROM SUCCINATE DEHYDROGENASE. J Biol Chem. 1963 Nov;238:3770–3774. [PubMed]
  • Hong JS, Kaback HR. Mutants of Salmonella typhimurium and Escherichia coli pleiotropically defective in active transport. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3336–3340. [PMC free article] [PubMed]
  • Ingledew WJ. The electron transport chain of Escherichia coli grown anaerobically with fumarate as terminal electron acceptor: an electron paramagnetic resonance study. J Gen Microbiol. 1983 Jun;129(6):1651–1659. [PubMed]
  • Ingledew WJ, Reid GA, Poole RK, Blum H, Ohnishi T. The iron-sulphur centres of aerobically-grown Escherichia coli K12. FEBS Lett. 1980 Feb 25;111(1):223–227. [PubMed]
  • Ishida A. A carbon monoxide-binding hemoprotein formed by heme accumulation in Escherichia coli. J Biochem. 1977 Jun;81(6):1869–1878. [PubMed]
  • Ishimoto M, Shimokawa O. Reduction of trimethylamine N-oxide by Escherichia coli as anaerobic respiration. Z Allg Mikrobiol. 1978;18(3):173–181. [PubMed]
  • Itagaki E, Hager LP. Studies on cytochrome b-562 of Escherichia coli. I. Purification and crystallization of cytochrome b-562. J Biol Chem. 1966 Aug 25;241(16):3687–3695. [PubMed]
  • Itagaki E, Hager LP. The amino acid sequence of cytochrome b562 of Escherichia coli. Biochem Biophys Res Commun. 1968 Sep 30;32(6):1013–1019. [PubMed]
  • Jackson RH, Cole JA, Cornish-Bowden A. The steady-state kinetics of the NADH-dependent nitrite reductase from Escherichia coli K 12. Nitrite and hydroxylamine reduction. Biochem J. 1981 Oct 1;199(1):171–178. [PMC free article] [PubMed]
  • Jackson RH, Cole JA, Cornish-Bowden A. The steady state kinetics of the NADH-dependent nitrite reductase from Escherichia coli K12. The reduction of single-electron acceptors. Biochem J. 1982 May 1;203(2):505–510. [PMC free article] [PubMed]
  • Jackson RH, Cornish-Bowden A, Cole JA. Prosthetic groups of the NADH-dependent nitrite reductase from Escherichia coli K12. Biochem J. 1981 Mar 1;193(3):861–867. [PMC free article] [PubMed]
  • Jaworowski A, Campbell HD, Poulis MI, Young IG. Genetic identification and purification of the respiratory NADH dehydrogenase of Escherichia coli. Biochemistry. 1981 Mar 31;20(7):2041–2047. [PubMed]
  • Jaworowski A, Mayo G, Shaw DC, Campbell HD, Young IG. Characterization of the respiratory NADH dehydrogenase of Escherichia coli and reconstitution of NADH oxidase in ndh mutant membrane vesicles. Biochemistry. 1981 Jun 9;20(12):3621–3628. [PubMed]
  • Jones CW. Microbial oxidative phosphorylation. Biochem Soc Trans. 1978;6(2):361–363. [PubMed]
  • Jones CW. Cytochrome patterns in classification and identification including their relevance to the oxidase test. Soc Appl Bacteriol Symp Ser. 1980;8:127–138. [PubMed]
  • Jones CW, Brice JM, Edwards C. The effect of respiratory chain composition on the growth efficiencies of aerobic bacteria. Arch Microbiol. 1977 Oct 24;115(1):85–93. [PubMed]
  • Jones H, Venables WA. Solubilisation of D-amino acid dehydrogenase of Escherichia coli K12 and its re-binding to envelope preparations. Biochimie. 1983 Mar;65(3):177–183. [PubMed]
  • Jones H, Venables WA. Effects of solubilisation on some properties of the membrane-bound respiratory enzyme D-amino acid dehydrogenase of Escherichia coli. FEBS Lett. 1983 Jan 24;151(2):189–192. [PubMed]
  • Jones RG. Ubiquinone deficiency in an auxotroph of Escherichia coli requiring 4-hydroxybenzoic acid. Biochem J. 1967 Jun;103(3):714–719. [PMC free article] [PubMed]
  • Jones RW. The topography of the membrane-bound hydrogenase of Escherichia coli explored by non-physiological electron acceptors [proceedings]. Biochem Soc Trans. 1979 Aug;7(4):724–725. [PubMed]
  • Jones RW. Hydrogen-dependent proton translocation by membrane vesicles from Escherichia coli [proceedings]. Biochem Soc Trans. 1979 Oct;7(5):1136–1137. [PubMed]
  • Jones RW. The role of the membrane-bound hydrogenase in the energy-conserving oxidation of molecular hydrogen by Escherichia coli. Biochem J. 1980 May 15;188(2):345–350. [PMC free article] [PubMed]
  • Jones RW, Garland PB. Sites and specificity of the reaction of bipyridylium compounds with anaerobic respiratory enzymes of Escherichia coli. Effects of permeability barriers imposed by the cytoplasmic membrane. Biochem J. 1977 Apr 15;164(1):199–211. [PMC free article] [PubMed]
  • Jones RW, Garland PB. The proton-consuming site of the respiratory nitrate reductase of Escherichia coli is on the cytoplasmic aspect of the cytoplasmic membrane [proceedings]. Biochem Soc Trans. 1978;6(2):416–418. [PubMed]
  • Jones RW, Ingledew WJ, Graham A, Garland PB. Topography of nitrate reductase of the cytoplasmic membrane of Escherichia coli: the nitrate-reducing site [proceedings]. Biochem Soc Trans. 1978;6(6):1287–1289. [PubMed]
  • Jones RW, Kranz RG, Gennis RB. Immunochemical analysis of the membrane-bound succinate dehydrogenase of Escherichia coli. FEBS Lett. 1982 Jun 1;142(1):81–87. [PubMed]
  • Jones RW, Lamont A, Garland PB. The mechanism of proton translocation driven by the respiratory nitrate reductase complex of Escherichia coli. Biochem J. 1980 Jul 15;190(1):79–94. [PMC free article] [PubMed]
  • Jurtshuk P, Jr, Mueller TJ, Acord WC. Bacterial terminal oxidases. CRC Crit Rev Microbiol. 1975 May;3(4):399–468. [PubMed]
  • Kaback HR. Transport studies in bacterial membrane vesicles. Science. 1974 Dec 6;186(4167):882–892. [PubMed]
  • Kaczorowski G, Kohn LD, Kaback HR. Purification and properties of D-lactate dehydrogenase from Escherichia coli ML 308-225. Methods Enzymol. 1978;53:519–527. [PubMed]
  • Kaczorowski G, Shaw L, F-entes M, Walsh C. Coupling of alanine racemase and D-alanine dehydrogenase to active transport of amino acids in Escherichia coli B membrane vesicles. J Biol Chem. 1975 Apr 25;250(8):2855–2865. [PubMed]
  • Kaczorowski G, Shaw L, Laura R, Walsh C. Active transport in Escherichia coli B membrane vesicles. Differential inactivating effects from the enzymatic oxidation of beta-chloro-L-alanine and beta-chloro-D-alanine. J Biol Chem. 1975 Dec 10;250(23):8921–8930. [PubMed]
  • Kaczorowski G, Walsh C. Active transport in Excherichia coli B membrane vesicles. Irreversible uncoupling by chloropyruvate. J Biol Chem. 1975 Dec 10;250(23):8931–8937. [PubMed]
  • Kamitakahara JR, Polglase WJ. The 503nm pigment of Escherichia coli. Biochem J. 1970 Dec;120(4):771–775. [PMC free article] [PubMed]
  • Karibian D, Couchoud P. Dihydro-orotate oxidase of Escherichia coli K12: purification, properties, and relation to the cytoplasmic membrane. Biochim Biophys Acta. 1974 Oct 17;364(2):218–232. [PubMed]
  • Kauffman HF, van Gelder BF. The respiratory chain of Azotobacter vinelandii. I. Spectral properites of cytochrome d. Biochim Biophys Acta. 1973 May 30;305(2):260–267. [PubMed]
  • Kauffman HF, van Gelder BF, DerVartanian DV. Effect of ligands on cytochrome d from Azotobacter vinelandii. J Bioenerg Biomembr. 1980 Aug;12(3-4):265–276. [PubMed]
  • Kay WW, Kornberg HL. The uptake of C4-dicarboxylic acids by Escherichia coli. Eur J Biochem. 1971 Jan;18(2):274–281. [PubMed]
  • Synthesis and sideedness of membrane-bound respiratory nitrate reductase (EC1.7.99.4) in Escherichia coli lacking cytochromes. Biochem J. 1975 May;148(2):329–333. [PMC free article] [PubMed]
  • Kenney WC, Walker WH, Singer TP. Studies on succinate dehydrogenase. XX. Amino acid sequence around the flavin site. J Biol Chem. 1972 Jul 25;247(14):4510–4513. [PubMed]
  • Kerr CT, Miller RW. Dihydroorotate-ubiquinone reductase complex of Escherichia coli B. J Biol Chem. 1968 Jun 10;243(11):2963–2968. [PubMed]
  • Kim IC, Bragg PD. Properties of nonheme iron in a cell envelope fraction from Escherichia coli. J Bacteriol. 1971 Sep;107(3):664–670. [PMC free article] [PubMed]
  • Kim IC, Bragg PD. Some properties of the succinate dehydrogenase of Escherichia coli. Can J Biochem. 1971 Oct;49(10):1098–1104. [PubMed]
  • Kimura H, Futai M. Effects of phospholipids on L-lactate dehydrogenase from membranes of Escherichia coli. Activation and stabilization of the enzyme with phospholipids. J Biol Chem. 1978 Feb 25;253(4):1095–1110. [PubMed]
  • Kistler WS, Hirsch CA, Cozzarelli NR, Lin EC. Second pyridine nucleotide-independent 1-alpha-glycerophosphate dehydrogenase in Escherichia coli K-12. J Bacteriol. 1969 Nov;100(2):1133–1135. [PMC free article] [PubMed]
  • Kistler WS, Lin EC. Anaerobic L- -glycerophosphate dehydrogenase of Escherichia coli: its genetic locus and its physiological role. J Bacteriol. 1971 Dec;108(3):1224–1234. [PMC free article] [PubMed]
  • Kistler WS, Lin EC. Purification and properties of the flavine-stimulated anaerobic L- -glycerophosphate dehydrogenase of Escherichia coli. J Bacteriol. 1972 Oct;112(1):539–547. [PMC free article] [PubMed]
  • Kita K, Kasahara M, Anraku Y. Formation of a membrane potential by reconstructed liposomes made with cytochrome b562-o complex, a terminal oxidase of Escherichia coli K12. J Biol Chem. 1982 Jul 25;257(14):7933–7935. [PubMed]
  • Kita K, Yamato I, Anraku Y. Purification and properties of cytochrome b556 in the respiratory chain of aerobically grown Escherichia coli K12. J Biol Chem. 1978 Dec 25;253(24):8910–8915. [PubMed]
  • Kito M, Pizer LI. Purification and regulatory properties of the biosynthetic L-glycerol 3-phosphate dehydrogenase from Escherichia coli. J Biol Chem. 1969 Jun 25;244(12):3316–3323. [PubMed]
  • Kline ES, Mahler HR. The lactic dehydrogenases of E. coli. Ann N Y Acad Sci. 1965 Jul 31;119(3):905–919. [PubMed]
  • Koch AL. How bacteria face depression, recession, and depression. Perspect Biol Med. 1976 Autumn;20(1):44–63. [PubMed]
  • Koch AL, Wang CH. How close to the theoretical diffusion limit do bacterial uptake systems function? Arch Microbiol. 1982 Feb;131(1):36–42. [PubMed]
  • Kohn LD, Kaback HR. Mechanisms of active transport in isolated bacterial membrane vesicles. XV. Purification and properties of the membrane-bound D-lactate dehydrogenase from Escherichia coli. J Biol Chem. 1973 Oct 25;248(20):7012–7017. [PubMed]
  • Konings WN, Kaback HR. Anaerobic transport in Escherichia coli membrane vesicles. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3376–3381. [PMC free article] [PubMed]
  • Kovatchev S, Vaz WL, Eibl H. Lipid dependence of the membrane-bound D-lactate dehydrogenase of Escherichia coli. J Biol Chem. 1981 Oct 25;256(20):10369–10374. [PubMed]
  • Kranz RG, Gennis RB. Isoelectric focusing and crossed immunoelectrophoresis of heme proteins in the Escherichia coli cytoplasmic membrane. J Bacteriol. 1982 Apr;150(1):36–45. [PMC free article] [PubMed]
  • Kranz RG, Gennis RB. Immunological characterization of the cytochrome o terminal oxidase from Escherichia coli. J Biol Chem. 1983 Sep 10;258(17):10614–10621. [PubMed]
  • Kristjansson JK, Hollocher TC. Substrate binding site for nitrate reductase of Escherichia coli is on the inner aspect of the membrane. J Bacteriol. 1979 Mar;137(3):1227–1233. [PMC free article] [PubMed]
  • Kröger A. Fumarate as terminal acceptor of phosphorylative electron transport. Biochim Biophys Acta. 1978 Oct 23;505(2):129–145. [PubMed]
  • Kung HF, Henning U. Limiting availability of binding sites for dehydrogenases on the cell membrane of Escherichia coli. Proc Natl Acad Sci U S A. 1972 Apr;69(4):925–929. [PMC free article] [PubMed]
  • Lakchaura BD, Fossum T, Jagger J. Inactivation of adenosine 5'-triphosphate synthesis and reduced-form nicotinamide adenine dinucleotide dehydrogenase activity in Escherichia coli by near-ultraviolet and violet radiations. J Bacteriol. 1976 Jan;125(1):111–118. [PMC free article] [PubMed]
  • Lambden PR, Guest JR. Mutants of Escherichia coli K12 unable to use fumarate as an anaerobic electron acceptor. J Gen Microbiol. 1976 Dec;97(2):145–160. [PubMed]
  • Larson TJ, Ehrmann M, Boos W. Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon. J Biol Chem. 1983 May 10;258(9):5428–5432. [PubMed]
  • Lawford HG, Haddock BA. Respiration-driven proton translocation in Escherichia coli. Biochem J. 1973 Sep;136(1):217–220. [PMC free article] [PubMed]
  • Lemire BD, Robinson JJ, Bradley RD, Scraba DG, Weiner JH. Structure of fumarate reductase on the cytoplasmic membrane of Escherichia coli. J Bacteriol. 1983 Jul;155(1):391–397. [PMC free article] [PubMed]
  • Lemire BD, Robinson JJ, Weiner JH. Identification of membrane anchor polypeptides of Escherichia coli fumarate reductase. J Bacteriol. 1982 Dec;152(3):1126–1131. [PMC free article] [PubMed]
  • Liang A, Houghton RL. Coregulation of oxidized nicotinamide adenine dinucleotide (phosphate) transhydrogenase and glutamate dehydrogenase activities in enteric bacteria during nitrogen limitation. J Bacteriol. 1981 Jun;146(3):997–1002. [PMC free article] [PubMed]
  • Lin EC. Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol. 1976;30:535–578. [PubMed]
  • Lohmeier E, Hagen DS, Dickie P, Weiner JH. Cloning and expression of fumarate reductase gene of Escherichia coli. Can J Biochem. 1981 Mar;59(3):158–164. [PubMed]
  • Lovitt RW, Wimpenny JW. Physiological behaviour of Escherichia coli grown in opposing gradients of oxidant and reductant in the gradostat. J Gen Microbiol. 1981 Dec;127(2):269–276. [PubMed]
  • Lutkenhaus JF, Moore BA, Masters M, Donachie WD. Individual proteins are synthesized continuously throughout the Escherichia coli cell cycle. J Bacteriol. 1979 May;138(2):352–360. [PMC free article] [PubMed]
  • MacGregor CH. Solubilization of Escherichia coli nitrate reductase by a membrane-bound protease. J Bacteriol. 1975 Mar;121(3):1102–1110. [PMC free article] [PubMed]
  • MacGregor CH. Biosynthesis of membrane-bound nitrate reductase in Escherichia coli: evidence for a soluble precursor. J Bacteriol. 1976 Apr;126(1):122–131. [PMC free article] [PubMed]
  • MacGregor CH, Bishop CW. Do cytochromes function as oxygen sensors in the regulation of nitrate reductase biosynthesis? J Bacteriol. 1977 Jul;131(1):372–373. [PMC free article] [PubMed]
  • MacGregor CH, Christopher AR. Asymmetric distribution of nitrate reductase subunits in the cytoplasmic membrane of Escherichia coli: evidence derived from surface labeling studies with transglutaminase. Arch Biochem Biophys. 1978 Jan 15;185(1):204–213. [PubMed]
  • MacGregor CH, McElhaney GE. New mechanism for post-translational processing during assembly of a cytoplasmic membrane protein? J Bacteriol. 1981 Nov;148(2):551–558. [PMC free article] [PubMed]
  • MacGregor CH, Schnaitman CA. Alterations in the cytoplasmic membrane proteins of various chlorate-resistant mutants of Escherichia coli. J Bacteriol. 1971 Oct;108(1):564–570. [PMC free article] [PubMed]
  • MacGregor CH, Schnaitman CA, Normansell DE. Purification and properties of nitrate reductase from Escherichia coli K12. J Biol Chem. 1974 Aug 25;249(16):5321–5327. [PubMed]
  • Macy J, Kulla H, Gottschalk G. H2-dependent anaerobic growth of Escherichia coli on L-malate: succinate formation. J Bacteriol. 1976 Feb;125(2):423–428. [PMC free article] [PubMed]
  • MARUYAMA Y. Biochemical aspects of the cell growth of Escherichia coli as studied by the method of synchronous culture. J Bacteriol. 1956 Dec;72(6):821–826. [PMC free article] [PubMed]
  • Mason TG, Richardson G. Escherichia coli and the human gut: some ecological considerations. J Appl Bacteriol. 1981 Aug;51(1):1–16. [PubMed]
  • Mather M, Blake R, Koland J, Schrock H, Russell P, O'Brien T, Hager LP, Gennis RB, O'Leary M. Escherichia coli pyruvate oxidase: interaction of a peripheral membrane protein with lipids. Biophys J. 1982 Jan;37(1):87–88. [PMC free article] [PubMed]
  • Mather M, Schopfer LM, Massey V, Gennis RB. Studies of the flavin adenine dinucleotide binding region in Escherichia coli pyruvate oxidase. J Biol Chem. 1982 Nov 10;257(21):12887–12892. [PubMed]
  • Mathews FS, Bethge PH, Czerwinski EW. The structure of cytochrome b562 from Escherichia coli at 2.5 A resolution. J Biol Chem. 1979 Mar 10;254(5):1699–1706. [PubMed]
  • Matsushita K, Patel L, Gennis RB, Kaback HR. Reconstitution of active transport in proteoliposomes containing cytochrome o oxidase and lac carrier protein purified from Escherichia coli. Proc Natl Acad Sci U S A. 1983 Aug;80(16):4889–4893. [PMC free article] [PubMed]
  • Mavis RD, Vagelos PR. The effect of phospholipid fatty acid composition in membranous enzymes in Escherichia coli. J Biol Chem. 1972 Feb 10;247(3):652–659. [PubMed]
  • McRee DE, Richardson DC. Preliminary X-ray diffraction studies on the hemoprotein subunit of Escherichia coli sulfite reductase. J Mol Biol. 1982 Jan 5;154(1):179–180. [PubMed]
  • Meyer DJ. Interaction of cytochrome oxidases aa3 and d with nitrite. Nat New Biol. 1973 Oct 31;245(148):276–277. [PubMed]
  • Meyer DJ, Jones CW. Oxidative phosphorylation in bacteria which contain different cytochrome oxidases. Eur J Biochem. 1973 Jul 2;36(1):144–151. [PubMed]
  • Miki K, Lin EC. Enzyme complex which couples glycerol-3-phosphate dehydrogenation to fumarate reduction in Escherichia coli. J Bacteriol. 1973 May;114(2):767–771. [PMC free article] [PubMed]
  • Miki K, Lin EC. Anaerobic energy-yielding reaction associated with transhydrogenation from glycerol 3-phosphate to fumarate by an Escherichia coli system. J Bacteriol. 1975 Dec;124(3):1282–1287. [PMC free article] [PubMed]
  • Miki K, Lin EC. Electron transport chain from glycerol 3-phosphate to nitrate in Escherichia coli. J Bacteriol. 1975 Dec;124(3):1288–1294. [PMC free article] [PubMed]
  • Miki K, Silhavy TJ, Andrews KJ. Resolution of glpA and glpT loci into separate operons in Escherichia coli K-12 strains. J Bacteriol. 1979 Apr;138(1):268–269. [PMC free article] [PubMed]
  • Miki K, Wilson TH. Proton translocation associated with anaerobic transhydrogenation from glycerol 3-phosphate to fumarate in Escherichia coli. Biochem Biophys Res Commun. 1978 Aug 29;83(4):1570–1575. [PubMed]
  • Miller JB, Amy NK. Molybdenum cofactor in chlorate-resistant and nitrate reductase-deficient insertion mutants of Escherichia coli. J Bacteriol. 1983 Aug;155(2):793–801. [PMC free article] [PubMed]
  • Miller MJ, Gennis RB. The purification and characterization of the cytochrome d terminal oxidase complex of the Escherichia coli aerobic respiratory chain. J Biol Chem. 1983 Aug 10;258(15):9159–9165. [PubMed]
  • Mitchell P, Moyle J. Respiratory-chain protonmotive stoicheiometry. Biochem Soc Trans. 1979 Oct;7(5):887–894. [PubMed]
  • MØLLER V. Diagnostic use of the Braun KCN test within the Enterobacteriaceae. Acta Pathol Microbiol Scand. 1954;34(2):115–126. [PubMed]
  • MOSS F. The influence of oxygen tension on respiration and cytochrome a2 formation of Escherichia coli. Aust J Exp Biol Med Sci. 1952 Dec;30(6):531–540. [PubMed]
  • Myer YP, Bullock PA. Cytochrome b562 from Escherichia coli: conformational, configurational, and spin-state characterization. Biochemistry. 1978 Sep 5;17(18):3723–3729. [PubMed]
  • Narindrasorasak S, Goldie AH, Sanwal BD. Characteristics and regulation of a phospholipid-activated malate oxidase from Escherichia coli. J Biol Chem. 1979 Mar 10;254(5):1540–1545. [PubMed]
  • Newton NA, Cox GB, Gibson F. The function of menaquinone (vitamin K 2 ) in Escherichia coli K-12. Biochim Biophys Acta. 1971 Jul 20;244(1):155–166. [PubMed]
  • NICHOLAS DJ, WILSON PW, HEINEN W, PALMER G, BEINERT H. Use of electron paramagnetic resonance spectroscopy in investigations of functional metal components in micro-organisms. Nature. 1962 Nov 3;196:433–436. [PubMed]
  • O'Brien TA, Blake R, 2nd, Gennis RB. Regulation by lipids of cofactor binding to a peripheral membrane enzyme: binding of thiamin pyrophosphate to pyruvate oxidase. Biochemistry. 1977 Jul 12;16(14):3105–3109. [PubMed]
  • O'Brien TA, Schrock HL, Russell P, Blake R, 2nd, Gennis RB. Preparation of Escherichia coli pyruvate oxidase utilizing a thiamine pyrophosphate affinity column. Biochim Biophys Acta. 1976 Nov 8;452(1):13–29. [PubMed]
  • O'Brien TA, Shelton E, Mather M, Gennis RB. Conformational studies of Escherichia coli pyruvate oxidase. Biochim Biophys Acta. 1982 Aug 10;705(3):321–329. [PubMed]
  • Oki M. Correlation between metabolism of phosphatidylglycerol and membrane synthesis in Escherichia coli. J Mol Biol. 1972 Jul 21;68(2):249–264. [PubMed]
  • Ohnishi T, Lim J, Winter DB, King TE. Thermodynamic and EPR characteristics of a HiPIP-type iron-sulfur center in the succinate dehydrogenase of the respiratory chain. J Biol Chem. 1976 Apr 10;251(7):2105–2109. [PubMed]
  • Ohnishi T, Salerno JC. Thermodynamic and EPR characteristics of two ferredoxin-type iron-sulfur centers in the succinate-ubiquinone reductase segment of the respiratory chain. J Biol Chem. 1976 Apr 10;251(7):2094–2104. [PubMed]
  • Olden K, Hempfling WP. The 503-nm pigment of Escherichia coli B: characterization and nutritional conditions affecting its accumulation. J Bacteriol. 1973 Feb;113(2):914–921. [PMC free article] [PubMed]
  • Olsiewski PJ, Kaczorowski GJ, Walsh C. Purification and properties of D-amino acid dehydrogenase, an inducible membrane-bound iron-sulfur flavoenzyme from Escherichia coli B. J Biol Chem. 1980 May 25;255(10):4487–4494. [PubMed]
  • Olsiewski PJ, Kaczorowski GJ, Walsh CT, Kaback HR. Reconstitution of Escherichia coli membrane vesicles with D-amino acid dehydrogenase. Biochemistry. 1981 Oct 13;20(21):6272–6279. [PubMed]
  • Orth V, Chippaux M, Pascal MC. A mutant defective in electron transfer to nitrate in Escherichia coli K12. J Gen Microbiol. 1980 Mar;117(1):257–262. [PubMed]
  • OTA A, YAMANAKA T, OKUNUKI K. OXIDATIVE PHOSPHORYLATION COUPLED WITH NITRATE RESPIRATION. II. PHOSPHORYLATION COUPLED WITH ANAEROBIC NITRATE REDUCTION IN A CELL-FREE EXTRACT OF ESCHERICHIA COLI. J Biochem. 1964 Feb;55:131–135. [PubMed]
  • Owen P, Kaback HR. Molecular structure of membrane vesicles from Escherichia coli. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3148–3152. [PMC free article] [PubMed]
  • Owen P, Kaback HR. Immunochemical analysis of membrane vesicles from Escherichia coli. Biochemistry. 1979 Apr 17;18(8):1413–1422. [PubMed]
  • Owen P, Kaback HR. Antigenic architecture of membrane vesicles from Escherichia coli. Biochemistry. 1979 Apr 17;18(8):1422–1426. [PubMed]
  • Owen P, Kaczorowski GJ, Kaback HR. Resolution and identification of iron-containing antigens in membrane vesicles from Escherichia coli. Biochemistry. 1980 Feb 5;19(3):596–600. [PubMed]
  • Padan E, Zilberstein D, Rottenberg H. The proton electrochemical gradient in Escherichia coli cells. Eur J Biochem. 1976 Apr 1;63(2):533–541. [PubMed]
  • Pascal MC, Casse F, Chippaux M, Lepelletier M. Genetic analysis of mutants of Escherichia coli K12 and Salmonella typhimurium LT2 deficient in hydrogenase activity. Mol Gen Genet. 1975 Nov 24;141(2):173–179. [PubMed]
  • PATEMAN JA, COVE DJ, REVER BM, ROBERTS DB. A COMMON CO-FACTOR FOR NITRATE REDUCTASE AND XANTHINE DEHYDROGENASE WHICH ALSO REGULATES THE SYNTHESIS OF NITRATE REDUCTASE. Nature. 1964 Jan 4;201:58–60. [PubMed]
  • PECK HD, Jr, GEST H. Formic dehydrogenase and the hydrogenlyase enzyme complex in coli-aerogenes bacteria. J Bacteriol. 1957 Jun;73(6):706–721. [PMC free article] [PubMed]
  • PINSENT J. The need for selenite and molybdate in the formation of formic dehydrogenase by members of the coli-aerogenes group of bacteria. Biochem J. 1954 May;57(1):10–16. [PMC free article] [PubMed]
  • Polglase WJ, Pun WT, Withaar J. Lipoquinones of Escherichia coli. Biochim Biophys Acta. 1966 May 5;118(2):425–426. [PubMed]
  • Poole RK. The influence of growth substrate and capacity for oxidative phosphorylation on respiratory oscillations in synchronous cultures of Escherichia coli K12. J Gen Microbiol. 1977 Apr;99(2):369–377. [PubMed]
  • Poole RK. Bacterial cytochrome oxidases. A structurally and functionally diverse group of electron-transfer proteins. Biochim Biophys Acta. 1983 Sep 15;726(3):205–243. [PubMed]
  • Poole RK, Blum H, Scott RI, Collinge A, Ohnishi T. The orientation of cytochromes in membrane multilayers prepared from aerobically grown Escherichia coli K12. J Gen Microbiol. 1980 Jul;119(1):145–154. [PubMed]
  • Poole RK, Chance B. The reaction of cytochrome o in Escherichia coli K12 with oxygen. Evidence for a spectrally and kinetically distinct cytochrome o in cells from oxygen-limited cultures. J Gen Microbiol. 1981 Oct;126(2):277–287. [PubMed]
  • Poole RK, Haddock BA. Energy-linked reduction of nicotinamide--adenine dinucleotide in membranes derived from normal and various respiratory-deficient mutant strains of Escherichia coli K12. Biochem J. 1974 Oct;144(1):77–85. [PMC free article] [PubMed]
  • Poole RK, Haddock BA. Effects of sulphate-limited growth in continuous culture on the electron-transport chain and energy conservation in Escherichia coli K12. Biochem J. 1975 Dec;152(3):537–546. [PMC free article] [PubMed]
  • Poole RK, Kumar C, Salmon I, Chance B. The 650 and chromophore in Escherichia coli is an 'oxy-' or oxygenated compound, not the oxidized form of cytochrome oxidase d: an hypothesis. J Gen Microbiol. 1983 May;129(5):1335–1344. [PubMed]
  • Poole RK, Salmon I, Chance B. The reaction with oxygen of cytochrome oxidase (cytochrome d) in Escherichia coli K12: optical studies of intermediate species and cytochrome b oxidation at sub-zero temperatures. J Gen Microbiol. 1983 May;129(5):1345–1355. [PubMed]
  • Poole RK, Scott RI, Blum H. Respiratory biogenesis during the cell cycle of aerobically grown Escherichia coli K12. The accumulation of iron-sulphur clusters and their orientation in the membrane. J Gen Microbiol. 1981 May;124(1):181–185. [PubMed]
  • Poole RK, Scott RI, Chance B. Low-temperature spectral and kinetic properties of cytochromes in Escherichia coli K-12 grown at lowered oxygen tension. Biochim Biophys Acta. 1980 Jul 8;591(2):471–482. [PubMed]
  • Poole RK, Scott RI, Chance B. The light-reversible binding of carbon monoxide to cytochrome a1 in Escherichia coli K12. J Gen Microbiol. 1981 Aug;125(2):431–438. [PubMed]
  • Poole RK, Sivaram A, Salmon I, Chance B. Photolysis at very low temperatures of co-liganded cytochrome oxidase (cytochrome d) in oxygen-limited Escherichia coli. FEBS Lett. 1982 May 17;141(2):237–241. [PubMed]
  • Poole RK, Waring AJ, Chance B. Evidence for a functional oxygen-bound intermediate in the reaction of Escherichia coli cytochrome o with oxygen. FEBS Lett. 1979 May 1;101(1):56–58. [PubMed]
  • Poole RK, Waring AJ, Chance B. The reaction of cytochrome omicron in Escherichia coli with oxygen. Low-temperature kinetic and spectral studies. Biochem J. 1979 Nov 15;184(2):379–389. [PMC free article] [PubMed]
  • Pope NR, Cole JA. Generation of a membrane potential by one of two independent pathways for nitrite reduction by Escherichia coli. J Gen Microbiol. 1982 Jan;128(1):219–222. [PubMed]
  • Porter N, Drozd JW, Linton JD. The effects of cyanide on the growth and respiration of Enterobacter aerogenes in continuous culture. J Gen Microbiol. 1983 Jan;129(1):7–16. [PubMed]
  • Poulis MI, Shaw DC, Campbell HD, Young IG. In vitro synthesis of the respiratory NADH dehydrogenase of Escherichia coli. Role of UUG as initiation codon. Biochemistry. 1981 Jul 7;20(14):4178–4185. [PubMed]
  • Poulson R, Whitlow KJ, Polglase WJ. Catabolite repression of protoporhyrin IX biosynthesis in Escherichia coli K-12. FEBS Lett. 1976 Mar 1;62(3):351–353. [PubMed]
  • Pratt EA, Fung LW, Flowers JA, Ho C. Membrane-bound D-lactate dehydrogenase from Escherichia coli: purification and properties. Biochemistry. 1979 Jan 23;18(2):312–316. [PubMed]
  • Pratt EA, Jones JA, Cottam PF, Dowd SR, Ho C. A biochemical study of the reconstitution of D-lactate dehydrogenase-deficient membrane vesicles using fluorine-labeled components. Biochim Biophys Acta. 1983 Apr 6;729(2):167–175. [PubMed]
  • Pudek MR, Bragg PD. Inhibition by cyanide of the respiratory chain oxidases of Escherichia coli. Arch Biochem Biophys. 1974 Oct;164(2):682–693. [PubMed]
  • Pudek MR, Bragg PD. Reaction of cyanide with cytochrome d in respiratory particles from exponential phase Escherichia coli. FEBS Lett. 1975 Feb 1;50(2):111–113. [PubMed]
  • Pudek MR, Bragg PD. Trapping of an intermediate in the oxidation-reduction cycle of cytochrome d in Escherichia coli. FEBS Lett. 1976 Mar 1;62(3):330–333. [PubMed]
  • Pudek MR, Bragg PD. Redox potentials of the cytochromes in the respiratory chain of aerobically grown Escherichia coli. Arch Biochem Biophys. 1976 Jun;174(2):546–552. [PubMed]
  • Puig J, Azoulay E. Etude génétique et biochimique des mutants résistant au Clo minus 3 (gènes chl A, chl B, chl C) C R Acad Sci Hebd Seances Acad Sci D. 1967 Apr 10;264(15):1916–1918. [PubMed]
  • Rainnie DJ, Bragg PD. The effect of iron deficiency on respiration and energy-coupling in Escherichia coli. J Gen Microbiol. 1973 Aug;77(2):339–349. [PubMed]
  • Raj T, Russell P, Flygare WH, Gennis RB. Quasi-elastic light scattering studies on pyruvate oxidase. Biochim Biophys Acta. 1977 Mar 15;481(1):42–49. [PubMed]
  • Ramos S, Kaback HR. The relationship between the electrochemical proton gradient and active transport in Escherichia coli membrane vesicles. Biochemistry. 1977 Mar 8;16(5):854–859. [PubMed]
  • Raunio RP, Straus LD, Jenkins WT. D-alanine oxidase from Escherichia coli: participation in the oxidation of L-alanine. J Bacteriol. 1973 Aug;115(2):567–573. [PMC free article] [PubMed]
  • Raunio RP, Jenkins WT. D-alanine oxidase form Escherichia coli: localization and induction by L-alanine. J Bacteriol. 1973 Aug;115(2):560–566. [PMC free article] [PubMed]
  • Recny MA, Hager LP. Reconstitution of native Escherichia coli pyruvate oxidase from apoenzyme monomers and FAD. J Biol Chem. 1982 Nov 10;257(21):12878–12886. [PubMed]
  • Reddy TL, Hendler RW. Reconstitution of escherichia coli succinoxidase from soluble components. J Biol Chem. 1978 Nov 10;253(21):7972–7979. [PubMed]
  • Reeves JP. Transient pH changes during D-lactate oxidation by membrane vesicles. Biochem Biophys Res Commun. 1971 Nov;45(4):931–936. [PubMed]
  • Reeves JP, Hong JS, Kaback HR. Reconstitution of D-lactate-dependent transport in membrane vesicles from a D-lactate dehydrogenase mutant of Escherichia coli. Proc Natl Acad Sci U S A. 1973 Jul;70(7):1917–1921. [PMC free article] [PubMed]
  • Reid GA, Haddock BA, Ingledew WJ. Assembly of functional b-type cytochromes in membranes from a 5-aminolaevulinic acid-requiring mutant of Escherichia coli. FEBS Lett. 1981 Aug 31;131(2):346–350. [PubMed]
  • Reid GA, Ingledew WJ. Characterization and phenotypic control of the cytochrome content of Escherichia coli. Biochem J. 1979 Aug 15;182(2):465–472. [PMC free article] [PubMed]
  • Reid GA, Ingledew WJ. The purification of a respiratory oxidase complex from Escherichia coli. FEBS Lett. 1980 Jan 1;109(1):1–4. [PubMed]
  • Rice CW, Hempfling WP. Oxygen-limited continuous culture and respiratory energy conservation in Escherichia coli. J Bacteriol. 1978 Apr;134(1):115–124. [PMC free article] [PubMed]
  • Rich PR. The organization of the quinone pool. Biochem Soc Trans. 1982 Dec;10(6):482–484. [PubMed]
  • Riviere C, Giordano G, Pommier J, Azoulay E. Membrane reconstitution in chl-r mutants of Escherichia coli K 12. VIII. Purification and properties of the FA factor, the product of the chl B gene. Biochim Biophys Acta. 1975 May 6;389(2):219–235. [PubMed]
  • Robinson JJ, Weiner JH. The effect of amphipaths on the flavin-linked aerobic glycerol-3-phosphate dehydrogenase from Escherichia coli. Can J Biochem. 1980 Oct;58(10):1172–1178. [PubMed]
  • Robinson JJ, Weiner JH. The effects of anions on fumarate reductase isolated from the cytoplasmic membrane of Escherichia coli. Biochem J. 1981 Dec 1;199(3):473–477. [PMC free article] [PubMed]
  • Robinson JJ, Weiner JH. Molecular properties of fumarate reductase isolated from the cytoplasmic membrane of Escherichia coli. Can J Biochem. 1982 Aug;60(8):811–816. [PubMed]
  • Rosenberg H, Cox GB, Butlin JD, Gutowski SJ. Metabolite transport in mutants of Escherichia coli K12 defective in electron transport and coupled phosphorylation. Biochem J. 1975 Feb;146(2):417–423. [PMC free article] [PubMed]
  • Ruch FE, Jr, Lin EC, Kowit JD, Tang CT, Goldberg AL. In vivo inactivation of glycerol dehydrogenase in Klebsiella aerogenes: properties of active and inactivated proteins. J Bacteriol. 1980 Mar;141(3):1077–1085. [PMC free article] [PubMed]
  • Ruíz-Herrera J, Alvarez A, Figueroa I. Solubilization and properties of formate dehydrogenases from the membrane of Escherichia coli. Biochim Biophys Acta. 1972 Dec 7;289(2):254–261. [PubMed]
  • Ruíz-Herrera J, García LG. Regulation of succinate dehydrogenase in Escherichia coli. J Gen Microbiol. 1972 Aug;72(1):29–35. [PubMed]
  • Ruiz-Herrera J, Showe MK, DeMoss JA. Nitrate reductase complex of Escherichia coli K-12: isolation and characterization of mutants unable to reduce nitrate. J Bacteriol. 1969 Mar;97(3):1291–1297. [PMC free article] [PubMed]
  • Russell P, Schrock HL, Gennis RB. Lipid activation and protease activation of pyruvate oxidase. Evidence suggesting a common site of interaction on the protein. J Biol Chem. 1977 Nov 10;252(21):7883–7887. [PubMed]
  • Santos E, Kung H, Young IG, Kaback HR. In vitro synthesis of the membrane-bound D-lactate dehydrogenase of Escherichia coli. Biochemistry. 1982 Apr 27;21(9):2085–2091. [PubMed]
  • Săsărman A, Surdeanu M, Horodniceanu T. Locus determining the synthesis of delta-aminolevulinic acid in Escherichia coli K-12. J Bacteriol. 1968 Nov;96(5):1882–1884. [PMC free article] [PubMed]
  • Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977;31:107–133. [PubMed]
  • Scarpulla RC, Soffer RL. Membrane-bound proline dehydrogenase from Escherichia coli. Solubilization, purification, and characterization. J Biol Chem. 1978 Sep 10;253(17):5997–6001. [PubMed]
  • Schrock HL, Gennis RB. Specific ligand enhancement of the affinity of E. coli pyruvate oxidase for dipalmitoyl phosphatidylcholine. Biochim Biophys Acta. 1980 Jul 10;614(1):215–220. [PubMed]
  • Schryvers A, Lohmeier E, Weiner JH. Chemical and functional properties of the native and reconstituted forms of the membrane-bound, aerobic glycerol-3-phosphate dehydrogenase of Escherichia coli. J Biol Chem. 1978 Feb 10;253(3):783–788. [PubMed]
  • Schryvers A, Weiner JH. The anaerobic sn-glycerol-3-phosphate dehydrogenase of Escherichia coli. Purification and characterization. J Biol Chem. 1981 Oct 10;256(19):9959–9965. [PubMed]
  • Scott RI, Poole RK, Chance B. Respiratory biogenesis during the cell cycle of aerobically grown Escherichia coli K 12. The accumulation and ligand binding of cytochrome o. J Gen Microbiol. 1981 Feb;122(2):255–261. [PubMed]
  • Scott RI, Poole RK. A re-examination of the cytochromes of Escherichia coli using fourth-order finite difference analysis: their characterization under different growth conditions and accumulation during the cell cycle. J Gen Microbiol. 1982 Aug;128(8):1685–1696. [PubMed]
  • Shaw DJ, Guest JR. Molecular cloning of the fnr gene of Escherichia coli K12. Mol Gen Genet. 1981;181(1):95–100. [PubMed]
  • Shaw DJ, Guest JR. Amplification and product identification of the fnr gene of Escherichia coli. J Gen Microbiol. 1982 Oct;128(10):2221–2228. [PubMed]
  • Shaw-Goldstein LA, Gennis RB, Walsh C. Identification, localization, and function of the thiamin pyrophosphate and flavin adenine dinucleotide dependent pyruvate oxidase in isolated membrane vesicles of Escherichia coli B. Biochemistry. 1978 Dec 26;17(26):5605–5613. [PubMed]
  • Shipp WS. Cytochromes of Escherichia coli. Arch Biochem Biophys. 1972 Jun;150(2):459–472. [PubMed]
  • Shipp WS, Piotrowski M, Friedman AE. Apparent cytochrome gene dose effects in F-lac and F-gal heterogenotes of Escherichia coli. Arch Biochem Biophys. 1972 Jun;150(2):473–481. [PubMed]
  • Short SA, Kaback HR, Hawkins T, Kohn LD. Immunochemical properties of the membrane-bound D-lactate dehydrogenase from Escherichia coli. J Biol Chem. 1975 Jun 10;250(11):4285–4290. [PubMed]
  • Short SA, Kaback HR, Kohn LD. D-lactate dehydrogenase binding in Escherichia coli dld- membrane vesicles reconstituted for active transport. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1461–1465. [PMC free article] [PubMed]
  • Short SA, Kaback HR, Kohn LD. Localization of D-lactate dehydrogenase in native and reconstituted Escherichia coli membrane vesicles. J Biol Chem. 1975 Jun 10;250(11):4291–4296. [PubMed]
  • Siegel LM, Davis PS. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. IV. The Escherichia coli hemoflavoprotein: subunit structure and dissociation into hemoprotein and flavoprotein components. J Biol Chem. 1974 Mar 10;249(5):1587–1598. [PubMed]
  • Simoni RD, Shallenberger MK. Coupling of energy to active transport of amino acids in Escherichia coli. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2663–2667. [PMC free article] [PubMed]
  • Singh AP, Bragg PD. Energization of phenylalanine transport and energy-dependent transhydrogenase by ATP in cytochrome-deficient Escherichia coli K12. Biochem Biophys Res Commun. 1974 Apr 23;57(4):1200–1206. [PubMed]
  • Singh AP, Bragg PD. Reduced nicotinamide adenine dinucleotide dependent reduction of fumarate coupled to membrane energization in a cytochrome deficient mutant of Escherichia coli K12. Biochim Biophys Acta. 1975 Aug 11;396(2):229–241. [PubMed]
  • Singh AP, Bragg PD. Anaerobic transport of amino acids coupled to the glycerol-3-phosphate-fumarate oxidoreductase system in a cytochrome-deficient mutant of Escherichia coli. Biochim Biophys Acta. 1976 Mar 12;423(3):450–461. [PubMed]
  • Singh AP, Bragg PD. Transport of alpha-methyl glucoside in a cytochrome-deficient mutant of Escherichia coli K-12. FEBS Lett. 1976 Apr 15;64(1):169–172. [PubMed]
  • Smith MW, Neidhardt FC. Proteins induced by anaerobiosis in Escherichia coli. J Bacteriol. 1983 Apr;154(1):336–343. [PMC free article] [PubMed]
  • Smith MW, Neidhardt FC. Proteins induced by aerobiosis in Escherichia coli. J Bacteriol. 1983 Apr;154(1):344–350. [PMC free article] [PubMed]
  • SMITH PH, HUNGATE RE. Isolation and characterization of Methanobacterium ruminantium n. sp. J Bacteriol. 1958 Jun;75(6):713–718. [PMC free article] [PubMed]
  • Smyth CJ, Siegel J, Salton MR, Owen P. Immunochemical analysis of inner and outer membranes of Escherichia coli by crossed immunoelectrophoresis. J Bacteriol. 1978 Jan;133(1):306–319. [PMC free article] [PubMed]
  • Spencer ME, Guest JR. Isolation and properties of fumarate reductase mutants of Escherichia coli. J Bacteriol. 1973 May;114(2):563–570. [PMC free article] [PubMed]
  • Spencer ME, Guest JR. Proteins of the inner membrane of Escherichia coli: identification of succinate dehydrogenase by polyacrylamide gel electrophoresis with sdh amber mutants. J Bacteriol. 1974 Mar;117(3):947–953. [PMC free article] [PubMed]
  • Spencer ME, Guest JR. Molecular cloning of four tricarboxylic acid cyclic genes of Escherichia coli. J Bacteriol. 1982 Aug;151(2):542–552. [PMC free article] [PubMed]
  • Stewart V. Requirement of Fnr and NarL functions for nitrate reductase expression in Escherichia coli K-12. J Bacteriol. 1982 Sep;151(3):1320–1325. [PMC free article] [PubMed]
  • Stewart V, MacGregor CH. Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE, and chlG loci. J Bacteriol. 1982 Aug;151(2):788–799. [PMC free article] [PubMed]
  • Stroobant P, Kaback HR. Reconstitution of ubiquinone-linked functions in membrane vesicles from a double quinone mutant of Escherichia coli. Biochemistry. 1979 Jan 9;18(1):226–231. [PubMed]
  • Takagi M, Tsuchiya T, Ishimoto M. Proton translocation coupled to trimethylamine N-oxide reduction in anaerobically grown Escherichia coli. J Bacteriol. 1981 Dec;148(3):762–768. [PMC free article] [PubMed]
  • Tanaka Y, Anraku Y, Futai M. Escherichia coli membrane D-lactate dehydrogenase. Isolation of the enzyme in aggregated from and its activation by Triton X-100 and phospholipids. J Biochem. 1976 Oct;80(4):821–830. [PubMed]
  • Tarmy EM, Kaplan NO. Chemical characterization of D-lactate dehydrogenase from Escherichia coli B. J Biol Chem. 1968 May 25;243(10):2579–2586. [PubMed]
  • Tarmy EM, Kaplan NO. Kinetics of Escherichia coli B D-lactate dehydrogenase and evidence for pyruvate-controlled change in conformation. J Biol Chem. 1968 May 25;243(10):2587–2596. [PubMed]
  • TARR HL. Microbiological deterioration of fish post mortem, its detection and control. Bacteriol Rev. 1954 Mar;18(1):1–15. [PMC free article] [PubMed]
  • TAYLOR WH, TAYLOR ML. ENZYMES OF THE PYRIMIDINE PATHWAY IN ESCHERICHIA COLI. II. INTRACELLULAR LOCALIZATION AND PROPERTIES OF DIHYDROOROTIC DEHYDROGENASE. J Bacteriol. 1964 Jul;88:105–110. [PMC free article] [PubMed]
  • Thomson JW, Shapiro BM. The respiratory chain NADH dehydrogenase of Escherichia coli. Isolation of an NADH:quinone oxidoreductase from membranes and comparison with the membrane-bound NADH:dichlorophenolindophenol oxidoreductase. J Biol Chem. 1981 Mar 25;256(6):3077–3084. [PubMed]
  • Tomsett AB, Garrett RH. The isolation and characterization of mutants defective in nitrate assimilation in Neurospora crassa. Genetics. 1980 Jul;95(3):649–660. [PMC free article] [PubMed]
  • Tsuchiya T, Misawa A, Miyake Y, Yamasaki K, Niiya S. Solubilization and reconstitution of membrane energy-transducing systems of Escherichia coli. FEBS Lett. 1982 Jun 7;142(2):231–234. [PubMed]
  • van der Plas J, Hellingwerf KJ, Seijen HG, Guest JR, Weiner JH, Konings WN. Identification and localization of enzymes of the fumarate reductase and nitrate respiration systems of escherichia coli by crossed immunoelectrophoresis. J Bacteriol. 1983 Feb;153(2):1027–1037. [PMC free article] [PubMed]
  • Van Wielink JE, Oltmann LF, Leeuwerik FJ, De Hollander JA, Stouthamer AH. A method for in situ characterization of b- and c-type cytochromes in Escherichia coli and in complex III from beef heart mitochondria by combined spectrum deconvolution and potentiometric analysis. Biochim Biophys Acta. 1982 Aug 20;681(2):177–190. [PubMed]
  • Venables WA, Guest JR. Transduction of nitrate reductase loci of Escherichia coli by phages P-1 and lambda. Mol Gen Genet. 1968;103(2):127–140. [PubMed]
  • Vincent SP. Oxidation--reduction potentials of molybdenum and iron--sulphur centres in nitrate reductase from Escherichia coli. Biochem J. 1979 Feb 1;177(2):757–759. [PMC free article] [PubMed]
  • Vincent SP, Bray RC. Electron-paramagnetic-resonance studies on nitrate reductase from Escherichia coli K12. Biochem J. 1978 Jun 1;171(3):639–647. [PMC free article] [PubMed]
  • Voellmy RW, Goldberg AL. ATP-stimulated endoprotease is associated with the cell membrane of E. coli. Nature. 1981 Apr 2;290(5805):419–421. [PubMed]
  • Wallace BJ, Young IG. Aerobic respiration in mutants of Escherichia coli accumulating quinone analogues of ubiquinone. Biochim Biophys Acta. 1977 Jul 7;461(1):75–83. [PubMed]
  • Wallace BJ, Young IG. Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA- menA- double quinone mutant. Biochim Biophys Acta. 1977 Jul 7;461(1):84–100. [PubMed]
  • Wang E, Walsh C. Suicide substrates for the alanine racemase of Escherichia coli B. Biochemistry. 1978 Apr 4;17(7):1313–1321. [PubMed]
  • Weiner JH. The localization of glycerol-3-phosphate dehydrogenase in Escherichia coli. J Membr Biol. 1974;15(1):1–14. [PubMed]
  • Weiner JH, Dickie P. Fumarate reductase of Escherichia coli. Elucidation of the covalent-flavin component. J Biol Chem. 1979 Sep 10;254(17):8590–8593. [PubMed]
  • Wild J, Klopotowski T. D-Amino acid dehydrogenase of Escherichia coli K12: positive selection of mutants defective in enzyme activity and localization of the structural gene. Mol Gen Genet. 1981;181(3):373–378. [PubMed]
  • Wimpenny JW, Cole JA. The regulation of metabolism in facultative bacteria. 3. The effect of nitrate. Biochim Biophys Acta. 1967 Oct 9;148(1):233–242. [PubMed]
  • WIMPENNY JW, RANLETT M, GRAY CT. Repression and derepression of cytochrome c biosynthesis in Escherichia coli. Biochim Biophys Acta. 1963 May 7;73:170–172. [PubMed]
  • Xavier AV, Czerwinski EW, Bethge PH, Mathews FS. Identification of the haem ligands of cytochrome b562 by X-ray and NMR methods. Nature. 1978 Sep 21;275(5677):245–247. [PubMed]
  • Yamamoto I, Ishimoto M. Anaerobic growth of Escherichia coli on formate by reduction of nitrate, fumarate, and trimethylamine N-oxide. Z Allg Mikrobiol. 1977;17(3):235–242. [PubMed]
  • Yamamoto I, Ishimoto M. Hydrogen-dependent growth of Escherichia coli in anaerobic respiration and the presence of hydrogenases with different functions. J Biochem. 1978 Sep;84(3):673–679. [PubMed]
  • Yamato I, Futai M, Anraku Y, Nonomura Y. Cytoplasmic membrane vesicles of Escherichia coli. II. Orientation of the vesicles studied by localization of enzymes. J Biochem. 1978 Jan;83(1):117–128. [PubMed]
  • Yoch DC, Carithers RP. Bacterial iron-sulfur proteins. Microbiol Rev. 1979 Sep;43(3):384–421. [PMC free article] [PubMed]
  • Young IG. Biosynthesis of bacterial menaquinones. Menaquinone mutants of Escherichia coli. Biochemistry. 1975 Jan 28;14(2):399–406. [PubMed]
  • Young IG, Jaworowski A, Poulis MI. Amplification of the respiratory NADH dehydrogenase of Escherichia coli by gene cloning. Gene. 1978 Sep;4(1):25–36. [PubMed]
  • Young IG, Jaworowski A, Poulis M. Cloning of the gene for the respiratory D-lactate dehydrogenase of Escherichia coli. Biochemistry. 1982 Apr 27;21(9):2092–2095. [PubMed]
  • Young IG, Rogers BL, Campbell HD, Jaworowski A, Shaw DC. Nucleotide sequence coding for the respiratory NADH dehydrogenase of Escherichia coli. UUG initiation codon. Eur J Biochem. 1981 May;116(1):165–170. [PubMed]
  • Young IG, Wallace BJ. Mutations affecting the reduced nicotinamide adenine dinucleotide dehydrogenase complex of Escherichia coli. Biochim Biophys Acta. 1976 Dec 6;449(3):376–385. [PubMed]
  • Zahl KJ, Rose C, Hanson RL. Isolation and partial characterization of a mutant of Escherichia coli lacking pyridine nucleotide transhydrogenase. Arch Biochem Biophys. 1978 Oct;190(2):598–602. [PubMed]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...