• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of microrevMicrobiol Mol Biol Rev ArchivePermissionsJournals.ASM.orgMMBR ArticleJournal InfoAuthorsReviewers
Microbiol Rev. Jun 1994; 58(2): 145–161.
PMCID: PMC372960

Cyclic beta-glucans of members of the family Rhizobiaceae.

Abstract

Cyclic beta-glucans are low-molecular-weight cell surface carbohydrates that are found almost exclusively in bacteria of the Rhizobiaceae family. These glucans are major cellular constituents, and under certain culture conditions their levels may reach up to 20% of the total cellular dry weight. In Agrobacterium and Rhizobium species, these molecules contain between 17 and 40 glucose residues linked solely by beta-(1,2) glycosidic bonds. In Bradyrhizobium species, the cyclic beta-glucans are smaller (10 to 13 glucose residues) and contain glucose linked by both beta-(1,6) and beta-(1,3) glycosidic bonds. In some rhizobial strains, the cyclic beta-glucans are unsubstituted, whereas in other rhizobia these molecules may become highly substituted with moieties such as sn-1-phosphoglycerol. To date, two genetic loci specifically associated with cyclic beta-glucan biosynthesis have been identified in Rhizobium (ndvA and ndvB) and Agrobacterium (chvA and chvB) species. Mutants with mutations at these loci have been shown to be impaired in their ability to grow in hypoosmotic media, have numerous alterations in their cell surface properties, and are also impaired in their ability to infect plants. The present review will examine the structure and occurrence of the cyclic beta-glucans in a variety of species of the Rhizobiaceae. The possible functions of these unique molecules in the free-living bacteria as well as during plant infection will be discussed.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (3.6M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Altabe S, Iñn de Iannino N, de Mendoza D, Ugalde RA. Expression of the Agrobacterium tumefaciens chvB virulence region in Azospirillum spp. J Bacteriol. 1990 May;172(5):2563–2567. [PMC free article] [PubMed]
  • Amemura A, Cabrera-Crespo J. Extracellular oligosaccharides and low-Mr polysaccharides containing (1----2)-beta-D-glucosidic linkages from strains of Xanthomonas, Escherichia coli and Klebsiella pneumoniae. J Gen Microbiol. 1986 Sep;132(9):2443–2452. [PubMed]
  • Watanabe H, Igari D, Tanahashi Y, Harada K, Saito M. Measurements of size and weight of prostate by means of transrectal ultrasonotomography. Tohoku J Exp Med. 1974 Nov;114(3):277–285. [PubMed]
  • Bhagwat AA, Tully RE, Keister DL. Isolation and characterization of an ndvB locus from Rhizobium fredii. Mol Microbiol. 1992 Aug;6(15):2159–2165. [PubMed]
  • Bhagwat AA, Tully RE, Keister DL. Identification and cloning of a cyclic beta-(1-->3), beta-(1-->6)-D-glucan synthesis locus from Bradyrhizobium japonicum. FEMS Microbiol Lett. 1993 Dec 1;114(2):139–144. [PubMed]
  • Breedveld MW, Cremers HC, Batley M, Posthumus MA, Zevenhuizen LP, Wijffelman CA, Zehnder AJ. Polysaccharide synthesis in relation to nodulation behavior of Rhizobium leguminosarum. J Bacteriol. 1993 Feb;175(3):750–757. [PMC free article] [PubMed]
  • Breedveld MW, Yoo JS, Reinhold VN, Miller KJ. Synthesis of glycerophosphorylated cyclic beta-(1,2)-glucans by Rhizobium meliloti ndv mutants. J Bacteriol. 1994 Feb;176(4):1047–1051. [PMC free article] [PubMed]
  • Breedveld MW, Zevenhuizen LP, Zehnder AJ. Excessive excretion of cyclic beta-(1,2)-glucan by Rhizobium trifolii TA-1. Appl Environ Microbiol. 1990 Jul;56(7):2080–2086. [PMC free article] [PubMed]
  • Breedveld MW, Zevenhuizen LP, Zehnder AJ. Synthesis of cyclic beta-(1,2)-glucans by Rhizobium leguminosarum biovar trifolii TA-1: factors influencing excretion. J Bacteriol. 1992 Oct;174(20):6336–6342. [PMC free article] [PubMed]
  • Bundle DR, Cherwonogrodzky JW, Perry MB. Characterization of Brucella polysaccharide B. Infect Immun. 1988 May;56(5):1101–1106. [PMC free article] [PubMed]
  • Cangelosi GA, Hung L, Puvanesarajah V, Stacey G, Ozga DA, Leigh JA, Nester EW. Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their roles in plant interactions. J Bacteriol. 1987 May;169(5):2086–2091. [PMC free article] [PubMed]
  • Cangelosi GA, Martinetti G, Leigh JA, Lee CC, Thienes C, Theines C, Nester EW. Role for [corrected] Agrobacterium tumefaciens ChvA protein in export of beta-1,2-glucan. J Bacteriol. 1989 Mar;171(3):1609–1615. [PMC free article] [PubMed]
  • Cangelosi GA, Martinetti G, Nester EW. Osmosensitivity phenotypes of Agrobacterium tumefaciens mutants that lack periplasmic beta-1,2-glucan. J Bacteriol. 1990 Apr;172(4):2172–2174. [PMC free article] [PubMed]
  • Clarke HR, Leigh JA, Douglas CJ. Molecular signals in the interactions between plants and microbes. Cell. 1992 Oct 16;71(2):191–199. [PubMed]
  • Cohen JL, Miller KJ. A novel membrane-bound glucosyltransferase from Bradyrhizobium japonicum. J Bacteriol. 1991 Jul;173(14):4271–4276. [PMC free article] [PubMed]
  • Csonka LN, Hanson AD. Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol. 1991;45:569–606. [PubMed]
  • DEDONDER RA, HASSID WZ. THE ENZYMATIC SYNTHESIS OF A (BETA-I,2-)-LINKED GLUCAN BY AN EXTRACT OF RHIZOBIUM JAPONICUM. Biochim Biophys Acta. 1964 Aug 19;90:239–248. [PubMed]
  • Delcour AH, Adler J, Kung C, Martinac B. Membrane-derived oligosaccharides (MDO's) promote closing of an E. coli porin channel. FEBS Lett. 1992 Jun 15;304(2-3):216–220. [PubMed]
  • Dickstein R, Bisseling T, Reinhold VN, Ausubel FM. Expression of nodule-specific genes in alfalfa root nodules blocked at an early stage of development. Genes Dev. 1988 Jun;2(6):677–687. [PubMed]
  • Douglas CJ, Staneloni RJ, Rubin RA, Nester EW. Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence region. J Bacteriol. 1985 Mar;161(3):850–860. [PMC free article] [PubMed]
  • Dylan T, Helinski DR, Ditta GS. Hypoosmotic adaptation in Rhizobium meliloti requires beta-(1----2)-glucan. J Bacteriol. 1990 Mar;172(3):1400–1408. [PMC free article] [PubMed]
  • Dylan T, Ielpi L, Stanfield S, Kashyap L, Douglas C, Yanofsky M, Nester E, Helinski DR, Ditta G. Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4403–4407. [PMC free article] [PubMed]
  • Dylan T, Nagpal P, Helinski DR, Ditta GS. Symbiotic pseudorevertants of Rhizobium meliloti ndv mutants. J Bacteriol. 1990 Mar;172(3):1409–1417. [PMC free article] [PubMed]
  • Fiedler W, Rotering H. Properties of Escherichia coli mutants lacking membrane-derived oligosaccharides. J Biol Chem. 1988 Oct 15;263(29):14684–14689. [PubMed]
  • Geiger O, Russo FD, Silhavy TJ, Kennedy EP. Membrane-derived oligosaccharides affect porin osmoregulation only in media of low ionic strength. J Bacteriol. 1992 Feb;174(4):1410–1413. [PMC free article] [PubMed]
  • Geiger O, Weissborn AC, Kennedy EP. Biosynthesis and excretion of cyclic glucans by Rhizobium meliloti 1021. J Bacteriol. 1991 May;173(9):3021–3024. [PMC free article] [PubMed]
  • Geremia RA, Cavaignac S, Zorreguieta A, Toro N, Olivares J, Ugalde RA. A Rhizobium meliloti mutant that forms ineffective pseudonodules in alfalfa produces exopolysaccharide but fails to form beta-(1----2) glucan. J Bacteriol. 1987 Feb;169(2):880–884. [PMC free article] [PubMed]
  • Goldberg DE, Rumley MK, Kennedy EP. Biosynthesis of membrane-derived oligosaccharides: a periplasmic phosphoglyceroltransferase. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5513–5517. [PMC free article] [PubMed]
  • Gore RS, Miller KJ. Cell surface carbohydrates of microaerobic, nitrogenase-active, continuous cultures of Bradyrhizobium sp. strain 32H1. J Bacteriol. 1992 Dec;174(23):7838–7840. [PMC free article] [PubMed]
  • Gore RS, Miller KJ. Cyclic [beta]-1,6 -1,3 Glucans Are Synthesized by Bradyrhizobium japonicum Bacteroids within Soybean (Glycine max) Root Nodules. Plant Physiol. 1993 May;102(1):191–194. [PMC free article] [PubMed]
  • Göttfert M. Regulation and function of rhizobial nodulation genes. FEMS Microbiol Rev. 1993 Jan;10(1-2):39–63. [PubMed]
  • Gray JX, Rolfe BG. Exopolysaccharide production in Rhizobium and its role in invasion. Mol Microbiol. 1990 Sep;4(9):1425–1431. [PubMed]
  • Halverson LJ, Stacey G. Signal exchange in plant-microbe interactions. Microbiol Rev. 1986 Jun;50(2):193–225. [PMC free article] [PubMed]
  • Harada T. Special bacterial polysaccharides and polysaccharases. Biochem Soc Symp. 1983;48:97–116. [PubMed]
  • Hisamatsu M. Cyclic (1----2)-beta-D-glucans (cyclosophorans) produced by Agrobacterium and Rhizobium species. Carbohydr Res. 1992 Jul 2;231:137–146. [PubMed]
  • Hoelzle I, Streeter JG. Increased Accumulation of Trehalose in Rhizobia Cultured under 1% Oxygen. Appl Environ Microbiol. 1990 Oct;56(10):3213–3215. [PMC free article] [PubMed]
  • Holland IB, Kenny B, Blight M. Haemolysin secretion from E coli. Biochimie. 1990 Feb-Mar;72(2-3):131–141. [PubMed]
  • Höltje JV, Fiedler W, Rotering H, Walderich B, van Duin J. Lysis induction of Escherichia coli by the cloned lysis protein of the phage MS2 depends on the presence of osmoregulatory membrane-derived oligosaccharides. J Biol Chem. 1988 Mar 15;263(8):3539–3541. [PubMed]
  • Ielpi L, Dylan T, Ditta GS, Helinski DR, Stanfield SW. The ndvB locus of Rhizobium meliloti encodes a 319-kDa protein involved in the production of beta-(1----2)-glucan. J Biol Chem. 1990 Feb 15;265(5):2843–2851. [PubMed]
  • de Iannino NI, Ugalde RA. Biochemical characterization of avirulent Agrobacterium tumefaciens chvA mutants: synthesis and excretion of beta-(1-2)glucan. J Bacteriol. 1989 May;171(5):2842–2849. [PMC free article] [PubMed]
  • de Iannino NI, Ugalde RA. Biosynthesis of cyclic beta-(1-3),beta-(1-6) glucan in Bradyrhizobium spp. Arch Microbiol. 1993;159(1):30–38. [PubMed]
  • Jackson BJ, Kennedy EP. The biosynthesis of membrane-derived oligosaccharides. A membrane-bound phosphoglycerol transferase. J Biol Chem. 1983 Feb 25;258(4):2394–2398. [PubMed]
  • Kennedy EP. Osmotic regulation and the biosynthesis of membrane-derived oligosaccharides in Escherichia coli. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1092–1095. [PMC free article] [PubMed]
  • Kennedy EP, Rumley MK. Osmotic regulation of biosynthesis of membrane-derived oligosaccharides in Escherichia coli. J Bacteriol. 1988 Jun;170(6):2457–2461. [PMC free article] [PubMed]
  • Lacroix JM, Loubens I, Tempête M, Menichi B, Bohin JP. The mdoA locus of Escherichia coli consists of an operon under osmotic control. Mol Microbiol. 1991 Jul;5(7):1745–1753. [PubMed]
  • Leigh JA, Coplin DL. Exopolysaccharides in plant-bacterial interactions. Annu Rev Microbiol. 1992;46:307–346. [PubMed]
  • Long SR. Rhizobium-legume nodulation: life together in the underground. Cell. 1989 Jan 27;56(2):203–214. [PubMed]
  • Lopez-Lara IM, Orgambide G, Dazzo FB, Olivares J, Toro N. Characterization and symbiotic importance of acidic extracellular polysaccharides of Rhizobium sp. strain GRH2 isolated from acacia nodules. J Bacteriol. 1993 May;175(10):2826–2832. [PMC free article] [PubMed]
  • Miller KJ, Gore RS, Benesi AJ. Phosphoglycerol substituents present on the cyclic beta-1,2-glucans of Rhizobium meliloti 1021 are derived from phosphatidylglycerol. J Bacteriol. 1988 Oct;170(10):4569–4575. [PMC free article] [PubMed]
  • Miller KJ, Gore RS, Johnson R, Benesi AJ, Reinhold VN. Cell-associated oligosaccharides of Bradyrhizobium spp. J Bacteriol. 1990 Jan;172(1):136–142. [PMC free article] [PubMed]
  • Miller KJ, Hadley JA, Gustine DL. Cyclic [beta]-1,6-1,3-Glucans of Bradyrhizobium japonicum USDA 110 Elicit Isoflavonoid Production in the Soybean (Glycine max) Host. Plant Physiol. 1994 Mar;104(3):917–923. [PMC free article] [PubMed]
  • Miller KJ, Kennedy EP. Transfer of phosphoethanolamine residues from phosphatidylethanolamine to the membrane-derived oligosaccharides of Escherichia coli. J Bacteriol. 1987 Feb;169(2):682–686. [PMC free article] [PubMed]
  • Miller KJ, Kennedy EP, Reinhold VN. Osmotic adaptation by gram-negative bacteria: possible role for periplasmic oligosaccharides. Science. 1986 Jan 3;231(4733):48–51. [PubMed]
  • Miller KJ, Reinhold VN, Weissborn AC, Kennedy EP. Cyclic glucans produced by Agrobacterium tumefaciens are substituted with sn-1-phosphoglycerol residues. Biochim Biophys Acta. 1987 Jul 10;901(1):112–118. [PubMed]
  • Moreno E, Stackebrandt E, Dorsch M, Wolters J, Busch M, Mayer H. Brucella abortus 16S rRNA and lipid A reveal a phylogenetic relationship with members of the alpha-2 subdivision of the class Proteobacteria. J Bacteriol. 1990 Jul;172(7):3569–3576. [PMC free article] [PubMed]
  • Park KG, Heys SD, Harris CI, Steele RJ, McNurlan MA, Eremin O, Garlick PJ. Arginine metabolism in benign and malignant disease of breast and colon: evidence for possible inhibition of tumor-infiltrating macrophages. Nutrition. 1991 May-Jun;7(3):185–188. [PubMed]
  • Nagpal P, Khanuja SP, Stanfield SW. Suppression of the ndv mutant phenotype of Rhizobium meliloti by cloned exo genes. Mol Microbiol. 1992 Feb;6(4):479–488. [PubMed]
  • Nap JP, Bisseling T. Developmental biology of a plant-prokaryote symbiosis: the legume root nodule. Science. 1990 Nov 16;250(4983):948–954. [PubMed]
  • O'Connell KP, Handelsman J. chvA locus may be involved in export of neutral cyclic beta-1,2-linked D-glucan from Agrobacterium tumefaciens. Mol Plant Microbe Interact. 1989 Jan-Feb;2(1):11–16. [PubMed]
  • Okada Y, Horiyama S, Koizumi K. [Studies on inclusion complexes of non-steroidal anti-inflammatory agents with cyclosophoraose-A]. Yakugaku Zasshi. 1986 Mar;106(3):240–247. [PubMed]
  • Planqué K, Kijne JW. Binding of pea lectins to a glycan type polysaccharide in the cell walls of Rhizobium leguminosarum. FEBS Lett. 1977 Jan 15;73(1):64–66. [PubMed]
  • Poppe L, York WS, van Halbeek H. Measurement of inter-glycosidic 13C-1H coupling constants in a cyclic beta(1-->2)-glucan by 13C-filtered 2D (1H,1H)ROESY. J Biomol NMR. 1993 Jan;3(1):81–89. [PubMed]
  • Puvanesarajah V, Schell FM, Stacey G, Douglas CJ, Nester EW. Role for 2-linked-beta-D-glucan in the virulence of Agrobacterium tumefaciens. J Bacteriol. 1985 Oct;164(1):102–106. [PMC free article] [PubMed]
  • REESE ET, PARRISH FW, MANDELS M. beta-D-1, 2-Glucanases in fungi. Can J Microbiol. 1961 Jun;7:309–317. [PubMed]
  • Rolin DB, Pfeffer PE, Osman SF, Szwergold BS, Kappler F, Benesi AJ. Structural studies of a phosphocholine substituted beta-(1,3);(1,6) macrocyclic glucan from Bradyrhizobium japonicum USDA 110. Biochim Biophys Acta. 1992 Jun 12;1116(3):215–225. [PubMed]
  • Rumley MK, Therisod H, Weissborn AC, Kennedy EP. Mechanisms of regulation of the biosynthesis of membrane-derived oligosaccharides in Escherichia coli. J Biol Chem. 1992 Jun 15;267(17):11806–11810. [PubMed]
  • Sandermann H, Jr, Dekker RF. Beta-1,2-glucosyl transfer by membrane preparations from Acetobacter xylinum. FEBS Lett. 1979 Nov 1;107(1):237–240. [PubMed]
  • Schneider JE, Reinhold V, Rumley MK, Kennedy EP. Structural studies of the membrane-derived oligosaccharides of Escherichia coli. J Biol Chem. 1979 Oct 25;254(20):10135–10138. [PubMed]
  • Schulman H, Kennedy EP. Localization of membrane-derived oligosaccharides in the outer envelope of Escherichia coli and their occurrence in other Gram-negative bacteria. J Bacteriol. 1979 Jan;137(1):686–688. [PMC free article] [PubMed]
  • Smit G, Swart S, Lugtenberg BJ, Kijne JW. Molecular mechanisms of attachment of Rhizobium bacteria to plant roots. Mol Microbiol. 1992 Oct;6(20):2897–2903. [PubMed]
  • Spaink HP. Rhizobial lipo-oligosaccharides: answers and questions. Plant Mol Biol. 1992 Dec;20(5):977–986. [PubMed]
  • Stanfield SW, Ielpi L, O'Brochta D, Helinski DR, Ditta GS. The ndvA gene product of Rhizobium meliloti is required for beta-(1----2)glucan production and has homology to the ATP-binding export protein HlyB. J Bacteriol. 1988 Aug;170(8):3523–3530. [PMC free article] [PubMed]
  • Stock JB, Rauch B, Roseman S. Periplasmic space in Salmonella typhimurium and Escherichia coli. J Biol Chem. 1977 Nov 10;252(21):7850–7861. [PubMed]
  • Streeter JG. Accumulation of alpha,alpha-trehalose by Rhizobium bacteria and bacteroids. J Bacteriol. 1985 Oct;164(1):78–84. [PMC free article] [PubMed]
  • Sutherland IW. Biosynthesis and composition of gram-negative bacterial extracellular and wall polysaccharides. Annu Rev Microbiol. 1985;39:243–270. [PubMed]
  • Swart S, Smit G, Lugtenberg BJ, Kijne JW. Restoration of attachment, virulence and nodulation of Agrobacterium tumefaciens chvB mutants by rhicadhesin. Mol Microbiol. 1993 Nov;10(3):597–605. [PubMed]
  • Thomashow MF, Karlinsey JE, Marks JR, Hurlbert RE. Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment. J Bacteriol. 1987 Jul;169(7):3209–3216. [PMC free article] [PubMed]
  • Tully RE, Keister DL, Gross KC. Fractionation of the beta-Linked Glucans of Bradyrhizobium japonicum and Their Response to Osmotic Potential. Appl Environ Microbiol. 1990 Jun;56(6):1518–1522. [PMC free article] [PubMed]
  • Uttaro AD, Cangelosi GA, Geremia RA, Nester EW, Ugalde RA. Biochemical characterization of avirulent exoC mutants of Agrobacterium tumefaciens. J Bacteriol. 1990 Mar;172(3):1640–1646. [PMC free article] [PubMed]
  • Wang RC, Seror SJ, Blight M, Pratt JM, Broome-Smith JK, Holland IB. Analysis of the membrane organization of an Escherichia coli protein translocator, HlyB, a member of a large family of prokaryote and eukaryote surface transport proteins. J Mol Biol. 1991 Feb 5;217(3):441–454. [PubMed]
  • Welsh DT, Reed RH, Herbert RA. The role of trehalose in the osmoadaptation of Escherichia coli NCIB 9484: interaction of trehalose, K+ and glutamate during osmoadaptation in continuous culture. J Gen Microbiol. 1991 Apr;137(4):745–750. [PubMed]
  • Willems A, Collins MD. Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. Int J Syst Bacteriol. 1993 Apr;43(2):305–313. [PubMed]
  • Williamson G, Damani K, Devenney P, Faulds CB, Morris VJ, Stevens BJ. Mechanism of action of cyclic beta-1,2-glucan synthetase from Agrobacterium tumefaciens: competition between cyclization and elongation reactions. J Bacteriol. 1992 Dec;174(24):7941–7947. [PMC free article] [PubMed]
  • Yanagi M, Yamasato K. Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett. 1993 Feb 15;107(1):115–120. [PubMed]
  • York WS, McNeil M, Darvill AG, Albersheim P. Beta-2-linked glucans secreted by fast-growing species of Rhizobium. J Bacteriol. 1980 Apr;142(1):243–248. [PMC free article] [PubMed]
  • York WS, Thomsen JU, Meyer B. The conformations of cyclic (1-->2)-beta-D-glucans: application of multidimensional clustering analysis to conformational data sets obtained by Metropolis Monte Carlo calculations. Carbohydr Res. 1993 Oct 4;248:55–80. [PubMed]
  • Zevenhuizen LP. Cellular glycogen, beta-1,2,-glucan, poly beta-hydroxybutyric acid and extracellular polysaccharides in fast-growing species of Rhizobium. Antonie Van Leeuwenhoek. 1981;47(6):481–497. [PubMed]
  • Zevenhuizen LP, Scholten-Koerselman HJ. Surface carbohydrates of Rhizobium. I. Beta-1, 2-glucans. Antonie Van Leeuwenhoek. 1979;45(2):165–175. [PubMed]
  • Zevenhuizen LP, van Veldhuizen A, Fokkens RH. Re-examination of cellular cyclic beta-1,2-glucans of Rhizobiaceae: distribution of ring sizes and degrees of glycerol-1-phosphate substitution. Antonie Van Leeuwenhoek. 1990 Apr;57(3):173–178. [PubMed]
  • Zorreguieta A, Cavaignac S, Geremia RA, Ugalde RA. Osmotic regulation of beta(1-2) glucan synthesis in members of the family Rhizobiaceae. J Bacteriol. 1990 Aug;172(8):4701–4704. [PMC free article] [PubMed]
  • Zorreguieta A, Geremia RA, Cavaignac S, Cangelosi GA, Nester EW, Ugalde RA. Identification of the product of an Agrobacterium tumefaciens chromosomal virulence gene. Mol Plant Microbe Interact. 1988 Mar;1(3):121–127. [PubMed]
  • Zorreguieta A, Tolmasky ME, Staneloni RJ. The enzymatic synthesis of beta 1-2 glucans. Arch Biochem Biophys. 1985 May 1;238(2):368–372. [PubMed]
  • Zorreguieta A, Ugalde RA. Formation in Rhizobium and Agrobacterium spp. of a 235-kilodalton protein intermediate in beta-D(1-2) glucan synthesis. J Bacteriol. 1986 Sep;167(3):947–951. [PMC free article] [PubMed]
  • Zorreguieta A, Ugalde RA, Leloir LF. An intermediate in cyclic beta 1-2 glucan biosynthesis. Biochem Biophys Res Commun. 1985 Jan 16;126(1):352–357. [PubMed]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...