• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of microrevMicrobiol Mol Biol Rev ArchivePermissionsJournals.ASM.orgMMBR ArticleJournal InfoAuthorsReviewers
Microbiol Rev. Sep 1993; 57(3): 543–594.
PMCID: PMC372926

Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria.

Abstract

Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (12M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Adler J, Epstein W. Phosphotransferase-system enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2895–2899. [PMC free article] [PubMed]
  • Alpert CA, Chassy BM. Molecular cloning and nucleotide sequence of the factor IIIlac gene of Lactobacillus casei. Gene. 1988;62(2):277–288. [PubMed]
  • Alpert CA, Chassy BM. Molecular cloning and DNA sequence of lacE, the gene encoding the lactose-specific enzyme II of the phosphotransferase system of Lactobacillus casei. Evidence that a cysteine residue is essential for sugar phosphorylation. J Biol Chem. 1990 Dec 25;265(36):22561–22568. [PubMed]
  • Alpert CA, Dörschug M, Saffen D, Frank R, Deutscher J, Hengstenberg W. The bacterial phosphoenolpyruvate-dependent phosphotransferase system. Isolation of active site peptides by reversed-phase high-performance liquid chromatography and determination of their primary structure. J Chromatogr. 1985 Jun 19;326:363–371. [PubMed]
  • Alpert CA, Frank R, Stüber K, Deutscher J, Hengstenberg W. Phosphoenolpyruvate-dependent protein kinase enzyme I of Streptococcus faecalis: purification and properties of the enzyme and characterization of its active center. Biochemistry. 1985 Feb 12;24(4):959–964. [PubMed]
  • Amaral D, Kornberg HL. Regulation of fructose uptake by glucose in Escherichia coli. J Gen Microbiol. 1975 Sep;90(1):157–168. [PubMed]
  • Amster-Choder O, Houman F, Wright A. Protein phosphorylation regulates transcription of the beta-glucoside utilization operon in E. coli. Cell. 1989 Sep 8;58(5):847–855. [PubMed]
  • Amster-Choder O, Wright A. Modulation of the dimerization of a transcriptional antiterminator protein by phosphorylation. Science. 1992 Sep 4;257(5075):1395–1398. [PubMed]
  • Anderson B, Weigel N, Kundig W, Roseman S. Sugar transport. 3. Purification and properties of a phosphocarrier protein (HPr) of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli. J Biol Chem. 1971 Nov 25;246(22):7023–7033. [PubMed]
  • Anderson JW, Bhanot P, Georges F, Klevit RE, Waygood EB. Involvement of the carboxy-terminal residue in the active site of the histidine-containing protein, HPr, of the phosphoenolpyruvate:sugar phosphotransferase system of Escherichia coli. Biochemistry. 1991 Oct 8;30(40):9601–9607. [PubMed]
  • Arnaud M, Vary P, Zagorec M, Klier A, Debarbouille M, Postma P, Rapoport G. Regulation of the sacPA operon of Bacillus subtilis: identification of phosphotransferase system components involved in SacT activity. J Bacteriol. 1992 May;174(10):3161–3170. [PMC free article] [PubMed]
  • Aulkemeyer P, Ebner R, Heilenmann G, Jahreis K, Schmid K, Wrieden S, Lengeler JW. Molecular analysis of two fructokinases involved in sucrose metabolism of enteric bacteria. Mol Microbiol. 1991 Dec;5(12):2913–2922. [PubMed]
  • Bachmann BJ. Linkage map of Escherichia coli K-12, edition 8. Microbiol Rev. 1990 Jun;54(2):130–197. [PMC free article] [PubMed]
  • Begley GS, Hansen DE, Jacobson GR, Knowles JR. Stereochemical course of the reactions catalyzed by the bacterial phosphoenolpyruvate:glucose phosphotransferase system. Biochemistry. 1982 Oct 26;21(22):5552–5556. [PubMed]
  • Beneski DA, Nakazawa A, Weigel N, Hartman PE, Roseman S. Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of a phosphocarrier protein HPr from wild type and mutants of Salmonella typhimurium. J Biol Chem. 1982 Dec 10;257(23):14492–14498. [PubMed]
  • Berman M, Lin EC. Glycerol-specific revertants of a phosphoenolpyruvate phosphotransferase mutant: suppression by the desensitization of glycerol kinase to feedback inhibition. J Bacteriol. 1971 Jan;105(1):113–120. [PMC free article] [PubMed]
  • Berman-Kurtz M, Lin EC, Richey DP. Promoter-like mutant with increased expression of the glycerol kinase operon of Escherichia coli. J Bacteriol. 1971 Jun;106(3):724–731. [PMC free article] [PubMed]
  • Bernsmann P, Alpert CA, Muss P, Deutscher J, Hengstenberg W. The bacterial PEP-dependent phosphotransferase system mechanism of gluconate phosphorylation in Streptococcus faecalis. FEBS Lett. 1982 Feb 8;138(1):101–103. [PubMed]
  • Bischoff DS, Ordal GW. Bacillus subtilis chemotaxis: a deviation from the Escherichia coli paradigm. Mol Microbiol. 1992 Jan;6(1):23–28. [PubMed]
  • Black RA, Hobson AC, Adler J. Adenylate cyclase is required for chemotaxis to phosphotransferase system sugars by Escherichia coli. J Bacteriol. 1983 Mar;153(3):1187–1195. [PMC free article] [PubMed]
  • Blatch GL, Scholle RR, Woods DR. Nucleotide sequence and analysis of the Vibrio alginolyticus sucrose uptake-encoding region. Gene. 1990 Oct 30;95(1):17–23. [PubMed]
  • Bolshakova TN, Molchanova ML, Erlagaeva RS, Grigorenko YA, Gershanovitch VN. A novel mutation FruS, altering synthesis of components of the phosphoenolpyruvate: fructose phosphotransferase system in Escherichia coli K12. Mol Gen Genet. 1992 Apr;232(3):394–398. [PubMed]
  • Boos W, Ehmann U, Bremer E, Middendorf A, Postma P. Trehalase of Escherichia coli. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions. J Biol Chem. 1987 Sep 25;262(27):13212–13218. [PubMed]
  • Boos W, Ehmann U, Forkl H, Klein W, Rimmele M, Postma P. Trehalose transport and metabolism in Escherichia coli. J Bacteriol. 1990 Jun;172(6):3450–3461. [PMC free article] [PubMed]
  • Botsford JL, Harman JG. Cyclic AMP in prokaryotes. Microbiol Rev. 1992 Mar;56(1):100–122. [PMC free article] [PubMed]
  • Bouma CL, Meadow ND, Stover EW, Roseman S. II-BGlc, a glucose receptor of the bacterial phosphotransferase system: molecular cloning of ptsG and purification of the receptor from an overproducing strain of Escherichia coli. Proc Natl Acad Sci U S A. 1987 Feb;84(4):930–934. [PMC free article] [PubMed]
  • Bourret RB, Borkovich KA, Simon MI. Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu Rev Biochem. 1991;60:401–441. [PubMed]
  • Bramley HF, Kornberg HL. Nucleotide sequence of bglC, the gene specifying enzymeIIbgl of the PEP:sugar phosphotransferase system in Escherichia coli K12, and overexpression of the gene product. J Gen Microbiol. 1987 Mar;133(3):563–573. [PubMed]
  • Bramley HF, Kornberg HL. Sequence homologies between proteins of bacterial phosphoenolpyruvate-dependent sugar phosphotransferase systems: identification of possible phosphate-carrying histidine residues. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4777–4780. [PMC free article] [PubMed]
  • Breidt F, Jr, Hengstenberg W, Finkeldei U, Stewart GC. Identification of the genes for the lactose-specific components of the phosphotransferase system in the lac operon of Staphylococcus aureus. J Biol Chem. 1987 Dec 5;262(34):16444–16449. [PubMed]
  • Brice CB, Kornberg HL. Location of a gene specifying phosphopyruvate synthase activity on the genome of Escherichia coli, K12. Proc R Soc Lond B Biol Sci. 1967 Sep 12;168(1012):281–292. [PubMed]
  • Briggs CE, Khandekar SS, Jacobson GR. Structure/function relationships in the Escherichia coli mannitol permease: identification of regions important for membrane insertion, substrate binding and oligomerization. Res Microbiol. 1992 Feb;143(2):139–149. [PubMed]
  • Buhr A, Daniels GA, Erni B. The glucose transporter of Escherichia coli. Mutants with impaired translocation activity that retain phosphorylation activity. J Biol Chem. 1992 Feb 25;267(6):3847–3851. [PubMed]
  • Buhr A, Erni B. Membrane topology of the glucose transporter of Escherichia coli. J Biol Chem. 1993 Jun 5;268(16):11599–11603. [PubMed]
  • Button DK, Egan JB, Hengstenberg W, Morse ML. Carbohydrate transport in Staphylococcus aureus. IV. Maltose accumulation and metabolism. Biochem Biophys Res Commun. 1973 Jun 8;52(3):850–855. [PubMed]
  • Byrne CR, Monroe RS, Ward KA, Kredich NM. DNA sequences of the cysK regions of Salmonella typhimurium and Escherichia coli and linkage of the cysK regions to ptsH. J Bacteriol. 1988 Jul;170(7):3150–3157. [PMC free article] [PubMed]
  • Calvo JM, Goodman M, Salgo M, Capes N. Salmonella locus affecting phosphoenolpyruvate synthase activity identified by a deletion analysis. J Bacteriol. 1971 Apr;106(1):286–288. [PMC free article] [PubMed]
  • Castro L, Feucht BU, Morse ML, Saier MH., Jr Regulation of carbohydrate permeases and adenylate cyclase in Escherichia coli. Studies with mutant strains in which enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system is thermolabile. J Biol Chem. 1976 Sep 25;251(18):5522–5527. [PubMed]
  • Celikel R, Dai XP, Stewart GC, Sutrina SL, Saier MH, Jr, Xuong NH, Reizer J. Crystallization and preliminary X-ray analysis of the lactose-specific phosphocarrier protein IIAlac of the phosphoenolpyruvate: sugar phosphotransferase system from Staphylococcus aureus. J Mol Biol. 1991 Dec 20;222(4):857–859. [PubMed]
  • Chassy BM, Alpert CA. Molecular characterization of the plasmid-encoded lactose-PTS of Lactobacillus casei. FEMS Microbiol Rev. 1989 Jun;5(1-2):157–165. [PubMed]
  • Chassy BM, Thompson J. Regulation and characterization of the galactose-phosphoenolpyruvate-dependent phosphotransferase system in Lactobacillus casei. J Bacteriol. 1983 Jun;154(3):1204–1214. [PMC free article] [PubMed]
  • Chin AM, Feldheim DA, Saier MH., Jr Altered transcriptional patterns affecting several metabolic pathways in strains of Salmonella typhimurium which overexpress the fructose regulon. J Bacteriol. 1989 May;171(5):2424–2434. [PMC free article] [PubMed]
  • Chin AM, Feucht BU, Saier MH., Jr Evidence for regulation of gluconeogenesis by the fructose phosphotransferase system in Salmonella typhimurium. J Bacteriol. 1987 Feb;169(2):897–899. [PMC free article] [PubMed]
  • Chin AM, Sutrina S, Feldheim DA, Saier MH., Jr Genetic expression of enzyme I activity of the phosphoenolpyruvate:sugar phosphotransferase system in ptsHI deletion strains of Salmonella typhimurium. J Bacteriol. 1987 Feb;169(2):894–896. [PMC free article] [PubMed]
  • Clark B, Holms WH. Control of the sequential utilization of glucose and fructose by Escherichia coli. J Gen Microbiol. 1976 Aug;96(2):191–201. [PubMed]
  • COHN M, HORIBATA K. Physiology of the inhibition by glucose of the induced synthesis of the beta-galactosideenzyme system of Escherichia coli. J Bacteriol. 1959 Nov;78:624–635. [PMC free article] [PubMed]
  • Cooper RA, Kornberg HL. The direct synthesis of phosphoenolpyruvate from pyruvate by Escherichia coli. Proc R Soc Lond B Biol Sci. 1967 Sep 12;168(1012):263–280. [PubMed]
  • Cordaro C. Genetics of the bacterial phosphoenolpyruvate: glycose phosphotransferase system. Annu Rev Genet. 1976;10:341–359. [PubMed]
  • Cordaro JC, Roseman S. Deletion mapping of the genes coding for HPr and enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium. J Bacteriol. 1972 Oct;112(1):17–29. [PMC free article] [PubMed]
  • Cowan PJ, Nagesha H, Leonard L, Howard JL, Pittard AJ. Characterization of the major promoter for the plasmid-encoded sucrose genes scrY, scrA, and scrB. J Bacteriol. 1991 Dec;173(23):7464–7470. [PMC free article] [PubMed]
  • Crasnier M, Danchin A. Characterization of Escherichia coli adenylate cyclase mutants with modified regulation. J Gen Microbiol. 1990 Sep;136(9):1825–1831. [PubMed]
  • Crutz AM, Steinmetz M. Transcription of the Bacillus subtilis sacX and sacY genes, encoding regulators of sucrose metabolism, is both inducible by sucrose and controlled by the DegS-DegU signalling system. J Bacteriol. 1992 Oct;174(19):6087–6095. [PMC free article] [PubMed]
  • Crutz AM, Steinmetz M, Aymerich S, Richter R, Le Coq D. Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system. J Bacteriol. 1990 Feb;172(2):1043–1050. [PMC free article] [PubMed]
  • Csonka LN, Clark AJ. Deletions generated by the transposon Tn10 in the srl recA region of the Escherichia coli K-12 chromosome. Genetics. 1979 Oct;93(2):321–343. [PMC free article] [PubMed]
  • Curtis SJ, Epstein W. Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase. J Bacteriol. 1975 Jun;122(3):1189–1199. [PMC free article] [PubMed]
  • Dannelly HK, Roseman S. NAD+ and NADH regulate an ATP-dependent kinase that phosphorylates enzyme I of the Escherichia coli phosphotransferase system. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11274–11276. [PMC free article] [PubMed]
  • Davis T, Yamada M, Elgort M, Saier MH., Jr Nucleotide sequence of the mannitol (mtl) operon in Escherichia coli. Mol Microbiol. 1988 May;2(3):405–412. [PubMed]
  • Dean DA, Reizer J, Nikaido H, Saier MH., Jr Regulation of the maltose transport system of Escherichia coli by the glucose-specific enzyme III of the phosphoenolpyruvate-sugar phosphotransferase system. Characterization of inducer exclusion-resistant mutants and reconstitution of inducer exclusion in proteoliposomes. J Biol Chem. 1990 Dec 5;265(34):21005–21010. [PubMed]
  • Debarbouille M, Arnaud M, Fouet A, Klier A, Rapoport G. The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J Bacteriol. 1990 Jul;172(7):3966–3973. [PMC free article] [PubMed]
  • Débarbouillé M, Martin-Verstraete I, Arnaud M, Klier A, Rapoport G. Positive and negative regulation controlling expression of the sac genes in Bacillus subtilis. Res Microbiol. 1991 Sep-Oct;142(7-8):757–764. [PubMed]
  • Débarbouillé M, Martin-Verstraete I, Klier A, Rapoport G. The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both sigma 54- and phosphotransferase system-dependent regulators. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2212–2216. [PMC free article] [PubMed]
  • Débarbouillé M, Martin-Verstraete I, Kunst F, Rapoport G. The Bacillus subtilis sigL gene encodes an equivalent of sigma 54 from gram-negative bacteria. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9092–9096. [PMC free article] [PubMed]
  • de Boer M, Broekhuizen CP, Postma PW. Regulation of glycerol kinase by enzyme IIIGlc of the phosphoenolpyruvate:carbohydrate phosphotransferase system. J Bacteriol. 1986 Jul;167(1):393–395. [PMC free article] [PubMed]
  • de Crécy-Lagard V, Bouvet OM, Lejeune P, Danchin A. Fructose catabolism in Xanthomonas campestris pv. campestris. Sequence of the PTS operon, characterization of the fructose-specific enzymes. J Biol Chem. 1991 Sep 25;266(27):18154–18161. [PubMed]
  • de Crécy-Lagard V, Lejeune P, Bouvet OM, Danchin A. Identification of two fructose transport and phosphorylation pathways in Xanthomonas campestris pv. campestris. Mol Gen Genet. 1991 Jul;227(3):465–472. [PubMed]
  • Delidakis CE, Jones-Mortimer MC, Kornberg HL. A mutant inducible for galactitol utilization in Escherichia coli K12. J Gen Microbiol. 1982 Mar;128(3):601–604. [PubMed]
  • den Blaauwen JL, Postma PW. Regulation of cyclic AMP synthesis by enzyme IIIGlc of the phosphoenolpyruvate:sugar phosphotransferase system in crp strains of Salmonella typhimurium. J Bacteriol. 1985 Oct;164(1):477–478. [PMC free article] [PubMed]
  • De Reuse H, Danchin A. The ptsH, ptsI, and crr genes of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: a complex operon with several modes of transcription. J Bacteriol. 1988 Sep;170(9):3827–3837. [PMC free article] [PubMed]
  • De Reuse H, Danchin A. Positive regulation of the pts operon of Escherichia coli: genetic evidence for a signal transduction mechanism. J Bacteriol. 1991 Jan;173(2):727–733. [PMC free article] [PubMed]
  • De Reuse H, Kolb A, Danchin A. Positive regulation of the expression of the Escherichia coli pts operon. Identification of the regulatory regions. J Mol Biol. 1992 Aug 5;226(3):623–635. [PubMed]
  • De Reuse H, Roy A, Danchin A. Analysis of the ptsH-ptsI-crr region in Escherichia coli K-12: nucleotide sequence of the ptsH gene. Gene. 1985;35(1-2):199–207. [PubMed]
  • Deutscher J, Beyreuther K, Sobek HM, Stüber K, Hengstenberg W. Phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus aureus: factor IIIlac, a trimeric phospho-carrier protein that also acts as a phase transfer catalyst. Biochemistry. 1982 Sep 28;21(20):4867–4873. [PubMed]
  • Deutscher J, Kessler U, Hengstenberg W. Streptococcal phosphoenolpyruvate: sugar phosphotransferase system: purification and characterization of a phosphoprotein phosphatase which hydrolyzes the phosphoryl bond in seryl-phosphorylated histidine-containing protein. J Bacteriol. 1985 Sep;163(3):1203–1209. [PMC free article] [PubMed]
  • Deutscher J, Pevec B, Beyreuther K, Kiltz HH, Hengstenberg W. Streptococcal phosphoenolpyruvate-sugar phosphotransferase system: amino acid sequence and site of ATP-dependent phosphorylation of HPr. Biochemistry. 1986 Oct 21;25(21):6543–6551. [PubMed]
  • Deutscher J, Saier MH., Jr ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6790–6794. [PMC free article] [PubMed]
  • Deutscher J, Sauerwald H. Stimulation of dihydroxyacetone and glycerol kinase activity in Streptococcus faecalis by phosphoenolpyruvate-dependent phosphorylation catalyzed by enzyme I and HPr of the phosphotransferase system. J Bacteriol. 1986 Jun;166(3):829–836. [PMC free article] [PubMed]
  • de Vos WM, Boerrigter I, van Rooyen RJ, Reiche B, Hengstenberg W. Characterization of the lactose-specific enzymes of the phosphotransferase system in Lactococcus lactis. J Biol Chem. 1990 Dec 25;265(36):22554–22560. [PubMed]
  • Dills SS, Apperson A, Schmidt MR, Saier MH., Jr Carbohydrate transport in bacteria. Microbiol Rev. 1980 Sep;44(3):385–418. [PMC free article] [PubMed]
  • Dills SS, Seno S. Regulation of hexitol catabolism in Streptococcus mutans. J Bacteriol. 1983 Feb;153(2):861–866. [PMC free article] [PubMed]
  • Dooijewaard G, Roossien FF, Robillard GT. Escherichia coli phosphoenolpyruvate dependent phosphotransferase system. Copurification of HPr and alpha 1-6 glucan. Biochemistry. 1979 Jul 10;18(14):2990–2996. [PubMed]
  • Dörschug M, Frank R, Kalbitzer HR, Hengstenberg W, Deutscher J. Phosphoenolpyruvate-dependent phosphorylation site in enzyme IIIglc of the Escherichia coli phosphotransferase system. Eur J Biochem. 1984 Oct 1;144(1):113–119. [PubMed]
  • Ebner R, Lengeler JW. DNA sequence of the gene scrA encoding the sucrose transport protein EnzymeII(Scr) of the phosphotransferase system from enteric bacteria: homology of the EnzymeII(Scr) and EnzymeII(Bgl) proteins. Mol Microbiol. 1988 Jan;2(1):9–17. [PubMed]
  • Eisermann R, Deutscher J, Gonzy-Treboul G, Hengstenberg W. Site-directed mutagenesis with the ptsH gene of Bacillus subtilis. Isolation and characterization of heat-stable proteins altered at the ATP-dependent regulatory phosphorylation site. J Biol Chem. 1988 Nov 15;263(32):17050–17054. [PubMed]
  • Elferink MG, Driessen AJ, Robillard GT. Functional reconstitution of the purified phosphoenolpyruvate-dependent mannitol-specific transport system of Escherichia coli in phospholipid vesicles: coupling between transport and phosphorylation. J Bacteriol. 1990 Dec;172(12):7119–7125. [PMC free article] [PubMed]
  • el Hassouni M, Henrissat B, Chippaux M, Barras F. Nucleotide sequences of the arb genes, which control beta-glucoside utilization in Erwinia chrysanthemi: comparison with the Escherichia coli bgl operon and evidence for a new beta-glycohydrolase family including enzymes from eubacteria, archeabacteria, and humans. J Bacteriol. 1992 Feb;174(3):765–777. [PMC free article] [PubMed]
  • el-Kabbani OA, Waygood EB, Delbaere LT. Tertiary structure of histidine-containing protein of the phosphoenolpyruvate:sugar phosphotransferase system of Escherichia coli. J Biol Chem. 1987 Sep 25;262(27):12926–12929. [PubMed]
  • Elliott J, Arber W. E. coli K-12 pel mutants, which block phage lambda DNA injection, coincide with ptsM, which determines a component of a sugar transport system. Mol Gen Genet. 1978 Apr 25;161(1):1–8. [PubMed]
  • Elvin CM, Kornberg HL. A mutant beta-D-glucoside transport system of Escherichia coli resistant to catabolite inhibition. FEBS Lett. 1982 Oct 18;147(2):137–142. [PubMed]
  • ENGLESBERG E, WATSON JA, HOFFEE PA. The glucose effect and the relationship between glucose permease, acid phosphatase, and glucose resistance. Cold Spring Harb Symp Quant Biol. 1961;26:261–276. [PubMed]
  • Epstein W, Rothman-Denes LB, Hesse J. Adenosine 3':5'-cyclic monophosphate as mediator of catabolite repression in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2300–2304. [PMC free article] [PubMed]
  • Erni B. Glucose-specific permease of the bacterial phosphotransferase system: phosphorylation and oligomeric structure of the glucose-specific IIGlc-IIIGlc complex of Salmonella typhimurium. Biochemistry. 1986 Jan 28;25(2):305–312. [PubMed]
  • Erni B. Glucose transport in Escherichia coli. FEMS Microbiol Rev. 1989 Jun;5(1-2):13–23. [PubMed]
  • Erni B. Coupling of energy to glucose transport by the bacterial phosphotransferase system. Res Microbiol. 1990 Mar-Apr;141(3):360–364. [PubMed]
  • Erni B. Group translocation of glucose and other carbohydrates by the bacterial phosphotransferase system. Int Rev Cytol. 1992;137:127–148. [PubMed]
  • Erni B, Trachsel H, Postma PW, Rosenbusch JP. Bacterial phosphotransferase system. Solubilization and purification of the glucose-specific enzyme II from membranes of Salmonella typhimurium. J Biol Chem. 1982 Nov 25;257(22):13726–13730. [PubMed]
  • Erni B, Zanolari B. The mannose-permease of the bacterial phosphotransferase system. Gene cloning and purification of the enzyme IIMan/IIIMan complex of Escherichia coli. J Biol Chem. 1985 Dec 15;260(29):15495–15503. [PubMed]
  • Erni B, Zanolari B. Glucose-permease of the bacterial phosphotransferase system. Gene cloning, overproduction, and amino acid sequence of enzyme IIGlc. J Biol Chem. 1986 Dec 15;261(35):16398–16403. [PubMed]
  • Erni B, Zanolari B, Graff P, Kocher HP. Mannose permease of Escherichia coli. Domain structure and function of the phosphorylating subunit. J Biol Chem. 1989 Nov 5;264(31):18733–18741. [PubMed]
  • Erni B, Zanolari B, Kocher HP. The mannose permease of Escherichia coli consists of three different proteins. Amino acid sequence and function in sugar transport, sugar phosphorylation, and penetration of phage lambda DNA. J Biol Chem. 1987 Apr 15;262(11):5238–5247. [PubMed]
  • Fairbrother WJ, Cavanagh J, Dyson HJ, Palmer AG, 3rd, Sutrina SL, Reizer J, Saier MH, Jr, Wright PE. Polypeptide backbone resonance assignments and secondary structure of Bacillus subtilis enzyme IIIglc determined by two-dimensional and three-dimensional heteronuclear NMR spectroscopy. Biochemistry. 1991 Jul 16;30(28):6896–6907. [PubMed]
  • Fairbrother WJ, Gippert GP, Reizer J, Saier MH, Jr, Wright PE. Low resolution solution structure of the Bacillus subtilis glucose permease IIA domain derived from heteronuclear three-dimensional NMR spectroscopy. FEBS Lett. 1992 Jan 20;296(2):148–152. [PubMed]
  • Fairbrother WJ, Palmer AG, 3rd, Rance M, Reizer J, Saier MH, Jr, Wright PE. Assignment of the aliphatic 1H and 13C resonances of the Bacillus subtilis glucose permease IIA domain using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy. Biochemistry. 1992 May 12;31(18):4413–4425. [PubMed]
  • Fandl JP, Thorner LK, Artz SW. Mutations that affect transcription and cyclic AMP-CRP regulation of the adenylate cyclase gene (cya) of Salmonella typhimurium. Genetics. 1990 Aug;125(4):719–727. [PMC free article] [PubMed]
  • Feldheim DA, Chin AM, Nierva CT, Feucht BU, Cao YW, Xu YF, Sutrina SL, Saier MH., Jr Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium. J Bacteriol. 1990 Sep;172(9):5459–5469. [PMC free article] [PubMed]
  • Ferenci T, Kornberg HL. The utilization of fructose by Escherichia coli. Properties of a mutant defective in fructose 1-phosphate kinase activity. Biochem J. 1973 Feb;132(2):341–347. [PMC free article] [PubMed]
  • Feucht BU, Saier MH., Jr Fine control of adenylate cyclase by the phosphoenolpyruvate:sugar phosphotransferase systems in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1980 Feb;141(2):603–610. [PMC free article] [PubMed]
  • Finkeldei U, Hengstenberg W. Staphylococcal lactose phosphoenolpyruvate-dependent phosphotransferase system: site-specific mutagenesis on the lacE gene gives evidence that a cysteine residue is responsible for phosphorylation. Protein Eng. 1991 Apr;4(4):475–478. [PubMed]
  • Finkeldei U, Kalbitzer HR, Eisermann R, Stewart GC, Hengstenberg W. Enzyme IIIlac of the staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: site-specific mutagenesis of histidine residues, biochemical characterization and 1H-NMR studies. Protein Eng. 1991 Apr;4(4):469–473. [PubMed]
  • Fischer R, Eisermann R, Reiche B, Hengstenberg W. Cloning, sequencing and overexpression of the mannitol-specific enzyme-III-encoding gene of Staphylococcus carnosus. Gene. 1989 Oct 30;82(2):249–257. [PubMed]
  • Fischer R, Hengstenberg W. Mannitol-specific enzyme II of the phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus carnosus. Sequence and expression in Escherichia coli and structural comparison with the enzyme IImannitol of Escherichia coli. Eur J Biochem. 1992 Mar 15;204(3):963–969. [PubMed]
  • Fischer R, von Strandmann RP, Hengstenberg W. Mannitol-specific phosphoenolpyruvate-dependent phosphotransferase system of Enterococcus faecalis: molecular cloning and nucleotide sequences of the enzyme IIIMtl gene and the mannitol-1-phosphate dehydrogenase gene, expression in Escherichia coli, and comparison of the gene products with similar enzymes. J Bacteriol. 1991 Jun;173(12):3709–3715. [PMC free article] [PubMed]
  • Fouet A, Arnaud M, Klier A, Rapoport G. Bacillus subtilis sucrose-specific enzyme II of the phosphotransferase system: expression in Escherichia coli and homology to enzymes II from enteric bacteria. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8773–8777. [PMC free article] [PubMed]
  • Fouet A, Arnaud M, Klier A, Rapoport G. Genetics of the phosphotransferase system of Bacillus subtilis. FEMS Microbiol Rev. 1989 Jun;5(1-2):175–182. [PubMed]
  • Fouet A, Klier A, Rapoport G. Nucleotide sequence of the sucrase gene of Bacillus subtilis. Gene. 1986;45(2):221–225. [PubMed]
  • Fouet A, Sonenshein AL. A target for carbon source-dependent negative regulation of the citB promoter of Bacillus subtilis. J Bacteriol. 1990 Feb;172(2):835–844. [PMC free article] [PubMed]
  • Fox DK, Meadow ND, Roseman S. Phosphate transfer between acetate kinase and enzyme I of the bacterial phosphotransferase system. J Biol Chem. 1986 Oct 15;261(29):13498–13503. [PubMed]
  • Fox DK, Presper KA, Adhya S, Roseman S, Garges S. Evidence for two promoters upstream of the pts operon: regulation by the cAMP receptor protein regulatory complex. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7056–7059. [PMC free article] [PubMed]
  • Fraenkel DG. The accumulation of glucose 6-phosphate from glucose and its effect in an Escherichia coli mutant lacking phosphoglucose isomerase and glucose 6-phosphate dehydrogenase. J Biol Chem. 1968 Dec 25;243(24):6451–6457. [PubMed]
  • Fraenkel DG. The phosphoenolpyruvate-initiated pathway of fructose metabolism in Escherichia coli. J Biol Chem. 1968 Dec 25;243(24):6458–6463. [PubMed]
  • Friedman SA, Hays JB. Initial characterization of hexose and hexitol phosphoenolpyruvate-dependent phosphotransferases of Staphylococcus aureus. J Bacteriol. 1977 Jun;130(3):991–999. [PMC free article] [PubMed]
  • Gagnon G, Vadeboncoeur C, Levesque RC, Frenette M. Cloning, sequencing and expression in Escherichia coli of the ptsI gene encoding enzyme I of the phosphoenolpyruvate:sugar phosphotransferase transport system from Streptococcus salivarius. Gene. 1992 Nov 2;121(1):71–78. [PubMed]
  • García JL. Cloning in Escherichia coli and molecular analysis of the sucrose system of the Salmonella plasmid SCR-53. Mol Gen Genet. 1985;201(3):575–577. [PubMed]
  • Gauthier L, Mayrand D, Vadeboncoeur C. Isolation of a novel protein involved in the transport of fructose by an inducible phosphoenolpyruvate fructose phosphotransferase system in Streptococcus mutans. J Bacteriol. 1984 Nov;160(2):755–763. [PMC free article] [PubMed]
  • Gay P, Cordier P, Marquet M, Delobbe A. Carbohydrate metabolism and transport in Bacillus subtilis. A study of ctr mutations. Mol Gen Genet. 1973 Mar 19;121(4):355–368. [PubMed]
  • Geerse RH, Izzo F, Postma PW. The PEP: fructose phosphotransferase system in Salmonella typhimurium: FPr combines enzyme IIIFru and pseudo-HPr activities. Mol Gen Genet. 1989 Apr;216(2-3):517–525. [PubMed]
  • Geerse RH, Ruig CR, Schuitema AR, Postma PW. Relationship between pseudo-HPr and the PEP: fructose phosphotransferase system in Salmonella typhimurium and Escherichia coli. Mol Gen Genet. 1986 Jun;203(3):435–444. [PubMed]
  • Geerse RH, van der Pluijm J, Postma PW. The repressor of the PEP:fructose phosphotransferase system is required for the transcription of the pps gene of Escherichia coli. Mol Gen Genet. 1989 Aug;218(2):348–352. [PubMed]
  • Génovésio-Taverne JC, Sauder U, Pauptit RA, Jansonius JN, Erni B. Crystallization and preliminary X-ray diffraction studies of the N-terminal domain of the phosphorylating subunit of mannose permease from Escherichia coli. J Mol Biol. 1990 Dec 5;216(3):515–517. [PubMed]
  • Gershanovitch VN, Bolshakova TN, Molchanova ML, Umyarov AM, Dobrynina OYu, Grigorenko YuA, Erlagaeva RS. Fructose-specific phosphoenolpyruvate dependent phosphotransferase system of Escherichia coli: its alterations and adenylate cyclase activity. FEMS Microbiol Rev. 1989 Jun;5(1-2):125–133. [PubMed]
  • Ghosh BK, Owens K, Pietri R, Peterkofsky A. Localization to the inner surface of the cytoplasmic membrane by immunoelectron microscopy of enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system of Escherichia coli. Proc Natl Acad Sci U S A. 1989 Feb;86(3):849–853. [PMC free article] [PubMed]
  • Giaever HM, Styrvold OB, Kaasen I, Strøm AR. Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol. 1988 Jun;170(6):2841–2849. [PMC free article] [PubMed]
  • Gonzy-Tréboul G, de Waard JH, Zagorec M, Postma PW. The glucose permease of the phosphotransferase system of Bacillus subtilis: evidence for IIGlc and IIIGlc domains. Mol Microbiol. 1991 May;5(5):1241–1249. [PubMed]
  • Gonzy-Tréboul G, Steinmetz M. Phosphoenolpyruvate:sugar phosphotransferase system of Bacillus subtilis: cloning of the region containing the ptsH and ptsI genes and evidence for a crr-like gene. J Bacteriol. 1987 May;169(5):2287–2290. [PMC free article] [PubMed]
  • Gonzy-Tréboul G, Zagorec M, Rain-Guion MC, Steinmetz M. Phosphoenolpyruvate:sugar phosphotransferase system of Bacillus subtilis: nucleotide sequence of ptsX, ptsH and the 5'-end of ptsI and evidence for a ptsHI operon. Mol Microbiol. 1989 Jan;3(1):103–112. [PubMed]
  • Grenier FC, Hayward I, Novotny MJ, Leonard JE, Saier MH., Jr Identification of the phosphocarrier protein enzyme IIIgut: essential component of the glucitol phosphotransferase system in Salmonella typhimurium. J Bacteriol. 1985 Mar;161(3):1017–1022. [PMC free article] [PubMed]
  • Grenier FC, Waygood EB, Saier MH., Jr Bacterial phosphotransferase system: regulation of mannitol enzyme II activity by sulfhydryl oxidation. Biochemistry. 1985 Jan 1;24(1):47–51. [PubMed]
  • Grenier FC, Waygood EB, Saier MH., Jr Bacterial phosphotransferase system: regulation of the glucose and mannose enzymes II by sulfhydryl oxidation. Biochemistry. 1985 Aug 27;24(18):4872–4876. [PubMed]
  • Grenier FC, Waygood EB, Saier MH., Jr The bacterial phosphotransferase system: kinetic characterization of the glucose, mannitol, glucitol, and N-acetylglucosamine systems. J Cell Biochem. 1986;31(2):97–105. [PubMed]
  • Grisafi PL, Scholle A, Sugiyama J, Briggs C, Jacobson GR, Lengeler JW. Deletion mutants of the Escherichia coli K-12 mannitol permease: dissection of transport-phosphorylation, phospho-exchange, and mannitol-binding activities. J Bacteriol. 1989 May;171(5):2719–2727. [PMC free article] [PubMed]
  • Grübl G, Vogler AP, Lengeler JW. Involvement of the histidine protein (HPr) of the phosphotransferase system in chemotactic signaling of Escherichia coli K-12. J Bacteriol. 1990 Oct;172(10):5871–5876. [PMC free article] [PubMed]
  • HAGIHIRA H, WILSON TH, LIN EC. STUDIES ON THE GLUCOSE-TRANSPORT SYSTEM IN ESCHERICHIA COLI WITH ALPHA-METHYLGLUCOSIDE AS SUBSTRATE. Biochim Biophys Acta. 1963 Nov 15;78:505–515. [PubMed]
  • Haguenauer R, Kepes A. NaF inhibition of phosphorylation and dephosphorylation involved in -methyl-D glucoside transport in E. coli K 12. A pH dependant phenomenon sensitive to uncoupling agents. Biochimie. 1972;54(4):505–512. [PubMed]
  • Haguenauer-Tsapis R, Kepes A. Different sidedness of functionally homologous essential thiols in two membrane-bound phosphotransferase enzymes of Escherichia coli detected by permeant and nonpermeant thiol reagents. J Biol Chem. 1980 Jun 10;255(11):5075–5081. [PubMed]
  • Hall BG, Xu L. Nucleotide sequence, function, activation, and evolution of the cryptic asc operon of Escherichia coli K12. Mol Biol Evol. 1992 Jul;9(4):688–706. [PubMed]
  • Hammen PK, Waygood EB, Klevit RE. Reexamination of the secondary and tertiary structure of histidine-containing protein from Escherichia coli by homonuclear and heteronuclear NMR spectroscopy. Biochemistry. 1991 Dec 24;30(51):11842–11850. [PubMed]
  • Han MK, Knutson JR, Roseman S, Brand L. Sugar transport by the bacterial phosphotransferase system. Fluorescence studies of subunit interactions of enzyme I. J Biol Chem. 1990 Feb 5;265(4):1996–2003. [PubMed]
  • Han MK, Roseman S, Brand L. Sugar transport by the bacterial phosphotransferase system. Characterization of the sulfhydryl groups and site-specific labeling of enzyme I. J Biol Chem. 1990 Feb 5;265(4):1985–1995. [PubMed]
  • Hanson TE, Anderson RL. Phosphoenolpyruvate-dependent formation of D-fructose 1-phosphate by a four-component phosphotransferase system. Proc Natl Acad Sci U S A. 1968 Sep;61(1):269–276. [PMC free article] [PubMed]
  • Hardesty C, Colón G, Ferran C, DiRienzo JM. Deletion analysis of sucrose metabolic genes from a Salmonella plasmid cloned in Escherichia coli K12. Plasmid. 1987 Sep;18(2):142–155. [PubMed]
  • Hardesty C, Ferran C, DiRienzo JM. Plasmid-mediated sucrose metabolism in Escherichia coli: characterization of scrY, the structural gene for a phosphoenolpyruvate-dependent sucrose phosphotransferase system outer membrane porin. J Bacteriol. 1991 Jan;173(2):449–456. [PMC free article] [PubMed]
  • Harwood JP, Gazdar C, Prasad C, Peterkofsky A, Curtis SJ, Epstein W. Involvement of the glucose enzymes II of the sugar phosphotransferase system in the regulation of adenylate cyclase by glucose in Escherichia coli. J Biol Chem. 1976 Apr 25;251(8):2462–2468. [PubMed]
  • Hausman SZ, Thompson J, London J. Futile xylitol cycle in Lactobacillus casei. J Bacteriol. 1984 Oct;160(1):211–215. [PMC free article] [PubMed]
  • Hays JB, Simoni RD, Roseman S. Sugar transport. V. A trimeric lactose-specific phosphocarrier protein of the Staphylococcus aureus phosphotransferase system. J Biol Chem. 1973 Feb 10;248(3):941–956. [PubMed]
  • Heinrich R, Rapoport TA. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem. 1974 Feb 15;42(1):89–95. [PubMed]
  • Heller KB, Lin EC, Wilson TH. Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. J Bacteriol. 1980 Oct;144(1):274–278. [PMC free article] [PubMed]
  • Hengstenberg W, Reiche B, Eisermann R, Fischer R, Kessler U, Tarrach A, De Vos WM, Kalbitzer HR, Glaser S. Structure and function of proteins involved in sugar transport by the PTS of gram-positive bacteria. FEMS Microbiol Rev. 1989 Jun;5(1-2):35–42. [PubMed]
  • Henikoff S, Haughn GW, Calvo JM, Wallace JC. A large family of bacterial activator proteins. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6602–6606. [PMC free article] [PubMed]
  • Henkin TM, Grundy FJ, Nicholson WL, Chambliss GH. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol Microbiol. 1991 Mar;5(3):575–584. [PubMed]
  • Hernandez-Asensio M, Del Campo FF. Enhancement of alpha-methylglucoside efflux by respiration in respiratory mutants of Escherichia coli K-12. Arch Biochem Biophys. 1980 Apr 1;200(2):309–318. [PubMed]
  • Hernandez-Asensio M, Ramirez JM, Del Campo FF. The control by respiration of the uptake of alpha-methyl glucoside in Escherichia coli K12. Arch Microbiol. 1975 Apr 7;103(2):155–162. [PubMed]
  • Herzberg O. An atomic model for protein-protein phosphoryl group transfer. J Biol Chem. 1992 Dec 5;267(34):24819–24823. [PubMed]
  • Herzberg O, Reddy P, Sutrina S, Saier MH, Jr, Reizer J, Kapadia G. Structure of the histidine-containing phosphocarrier protein HPr from Bacillus subtilis at 2.0-A resolution. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2499–2503. [PMC free article] [PubMed]
  • HOFFEE P, ENGLESBERG E. Effect of metabolic activity on the glucose permease of bacterial cells. Proc Natl Acad Sci U S A. 1962 Oct 15;48:1759–1765. [PMC free article] [PubMed]
  • HOFFEE P, ENGLESBERG E, LAMY F. THE GLUCOSE PERMEASE SYSTEM IN BACTERIA. Biochim Biophys Acta. 1964 Mar 30;79:337–350. [PubMed]
  • Honeyman AL, Curtiss R., 3rd Isolation, characterization, and nucleotide sequence of the Streptococcus mutans mannitol-phosphate dehydrogenase gene and the mannitol-specific factor III gene of the phosphoenolpyruvate phosphotransferase system. Infect Immun. 1992 Aug;60(8):3369–3375. [PMC free article] [PubMed]
  • Houman F, Diaz-Torres MR, Wright A. Transcriptional antitermination in the bgl operon of E. coli is modulated by a specific RNA binding protein. Cell. 1990 Sep 21;62(6):1153–1163. [PubMed]
  • Hoving H, Lolkema JS, Robillard GT. Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: equilibrium kinetics and mechanism of enzyme i phosphorylation. Biochemistry. 1981 Jan 6;20(1):87–93. [PubMed]
  • Hummel U, Nuoffer C, Zanolari B, Erni B. A functional protein hybrid between the glucose transporter and the N-acetylglucosamine transporter of Escherichia coli. Protein Sci. 1992 Mar;1(3):356–362. [PMC free article] [PubMed]
  • Hunter IS, Kornberg HL. Glucose transport of Escherichia coli growing in glucose-limited continuous culture. Biochem J. 1979 Jan 15;178(1):97–101. [PMC free article] [PubMed]
  • Hurley JH, Faber HR, Worthylake D, Meadow ND, Roseman S, Pettigrew DW, Remington SJ. Structure of the regulatory complex of Escherichia coli IIIGlc with glycerol kinase. Science. 1993 Jan 29;259(5095):673–677. [PubMed]
  • Island MD, Wei BY, Kadner RJ. Structure and function of the uhp genes for the sugar phosphate transport system in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1992 May;174(9):2754–2762. [PMC free article] [PubMed]
  • Jablonski EG, Brand L, Roseman S. Sugar transport by the bacterial phosphotransferase system. Preparation of a fluorescein derivative of the glucose-specific phosphocarrier protein IIIGlc and its binding to the phosphocarrier protein HPr. J Biol Chem. 1983 Aug 25;258(16):9690–9699. [PubMed]
  • Jacobson GR. Interrelationships between protein phosphorylation and oligomerization in transport and chemotaxis via the Escherichia coli mannitol phosphotransferase system. Res Microbiol. 1992 Jan;143(1):113–116. [PubMed]
  • Jacobson GR, Kelly DM, Finlay DR. The intramembrane topography of the mannitol-specific enzyme II of the Escherichia coli phosphotransferase system. J Biol Chem. 1983 Mar 10;258(5):2955–2959. [PubMed]
  • Jacobson GR, Lee CA, Leonard JE, Saier MH., Jr Mannitol-specific enzyme II of the bacterial phosphotransferase system. I. Properties of the purified permease. J Biol Chem. 1983 Sep 10;258(17):10748–10756. [PubMed]
  • Jacobson GR, Lee CA, Saier MH., Jr Purification of the mannitol-specific enzyme II of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system. J Biol Chem. 1979 Jan 25;254(2):249–252. [PubMed]
  • Jacobson GR, Lodge J, Poy F. Carbohydrate uptake in the oral pathogen Streptococcus mutans: mechanisms and regulation by protein phosphorylation. Biochimie. 1989 Sep-Oct;71(9-10):997–1004. [PubMed]
  • Jacobson GR, Stephan MM. Structural and functional domains of the mannitol-specific enzyme II of the E. coli phosphoenolpyruvate-dependent phosphotransferase system. FEMS Microbiol Rev. 1989 Jun;5(1-2):25–34. [PubMed]
  • Jacobson GR, Tanney LE, Kelly DM, Palman KB, Corn SB. Substrate and phospholipid specificity of the purified mannitol permease of Escherichia coli. J Cell Biochem. 1983;23(1-4):231–240. [PubMed]
  • Ullah AH, Cirillo VP. Mycoplasma phosphoenolpyruvate-dependent sugar phosphotransferase system: purification and characterization of the phosphocarrier protein. J Bacteriol. 1976 Sep;127(3):1298–1306. [PMC free article] [PubMed]
  • Jaffor Ullah AH, Cirillo VP. Mycoplasma phosphoenolpyruvate-dependent sugar phosphotransferase system: purification and characterization of enzyme I. J Bacteriol. 1977 Sep;131(3):988–996. [PMC free article] [PubMed]
  • Jahreis K, Postma PW, Lengeler JW. Nucleotide sequence of the ilvH-fruR gene region of Escherichia coli K12 and Salmonella typhimurium LT2. Mol Gen Genet. 1991 Apr;226(1-2):332–336. [PubMed]
  • Jenkinson HF. Properties of a phosphocarrier protein (HPr) extracted from intact cells of Streptococcus sanguis. J Gen Microbiol. 1989 Dec;135(12):3183–3197. [PubMed]
  • Jiang W, Wu LF, Tomich J, Saier MH, Jr, Niehaus WG. Corrected sequence of the mannitol (mtl) operon in Escherichia coli. Mol Microbiol. 1990 Nov;4(11):2003–2006. [PubMed]
  • Jin RZ, Lin EC. An inducible phosphoenolpyruvate: dihydroxyacetone phosphotransferase system in Escherichia coli. J Gen Microbiol. 1984 Jan;130(1):83–88. [PubMed]
  • Jones-Mortimer MC, Kornberg HL. Genetical analysis of fructose utilization by Escherichia coli. Proc R Soc Lond B Biol Sci. 1974 Sep 17;187(1087):121–131. [PubMed]
  • Jones-Mortimer MC, Kornberg HL. Genetic control of inducer exclusion by Escherichia coli. FEBS Lett. 1974 Nov 1;48(1):93–95. [PubMed]
  • Jones-Mortimer MC, Kornberg HL. Amino-sugar transport systems of Escherichia coli K12. J Gen Microbiol. 1980 Apr;117(2):369–376. [PubMed]
  • Joseph E, Bernsley C, Guiso N, Ullmann A. Multiple regulation of the activity of adenylate cyclase in Escherichia coli. Mol Gen Genet. 1982;185(2):262–268. [PubMed]
  • Kaback HR. Regulation of sugar transport in isolated bacterial membrane preparations from Escherichia coli. Proc Natl Acad Sci U S A. 1969 Jul;63(3):724–731. [PMC free article] [PubMed]
  • Kacser H, Burns JA. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed]
  • Kalbitzer HR, Deutscher J, Hengstenberg W, Rösch P. Phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus aureus: 1H nuclear magnetic resonance studies on phosphorylated and unphosphorylated factor IIIlac and its interaction with the phosphocarrier protein HPr. Biochemistry. 1981 Oct 13;20(21):6178–6185. [PubMed]
  • Kalbitzer HR, Hengstenberg W, Rösch P, Muss P, Bernsmann P, Engelmann R, Dörschug M, Deutscher J. HPr proteins of different microorganisms studied by hydrogen-1 high-resolution nuclear magnetic resonance: similarities of structures and mechanisms. Biochemistry. 1982 Jun 8;21(12):2879–2885. [PubMed]
  • Kalbitzer HR, Muss HP, Engelmann R, Kiltz HH, Stüber K, Hengstenberg W. Phosphoenolpyruvate-dependent phosphotransferase system. 1H NMR studies on chemically modified HPr proteins. Biochemistry. 1985 Aug 13;24(17):4562–4569. [PubMed]
  • Kalbitzer HR, Neidig KP, Hengstenberg W. Two-dimensional 1H NMR studies on HPr protein from Staphylococcus aureus: complete sequential assignments and secondary structure. Biochemistry. 1991 Nov 19;30(46):11186–11192. [PubMed]
  • Kelker NE, Simkins RA, Anderson RL. Pathway of L-sorbose metabolism in Aerobacter aerogenes. J Biol Chem. 1972 Mar 10;247(5):1479–1483. [PubMed]
  • Khandekar SS, Jacobson GR. Evidence for two distinct conformations of the Escherichia coli mannitol permease that are important for its transport and phosphorylation functions. J Cell Biochem. 1989 Feb;39(2):207–216. [PubMed]
  • Kim K, Yoo OJ. Two subunits of mannose permease, II-PMan and II-MMan, of Escherichia coli mediate coliphage N4 infection. Biochem Int. 1989 Mar;18(3):545–549. [PubMed]
  • Klein W, Ehmann U, Boos W. The repression of trehalose transport and metabolism in Escherichia coli by high osmolarity is mediated by trehalose-6-phosphate phosphatase. Res Microbiol. 1991 May;142(4):359–371. [PubMed]
  • Klevit RE, Drobny GP. Two-dimensional 1H NMR studies of histidine-containing protein from Escherichia coli. 2. Leucine resonance assignments by long-range coherence transfer. Biochemistry. 1986 Nov 18;25(23):7770–7773. [PubMed]
  • Klevit RE, Drobny GP, Waygood EB. Two-dimensional 1H NMR studies of histidine-containing protein from Escherichia coli. 1. Sequential resonance assignments. Biochemistry. 1986 Nov 18;25(23):7760–7769. [PubMed]
  • Klevit RE, Waygood EB. Two-dimensional 1H NMR studies of histidine-containing protein from Escherichia coli. 3. Secondary and tertiary structure as determined by NMR. Biochemistry. 1986 Nov 18;25(23):7774–7781. [PubMed]
  • Klier AF, Rapoport G. Genetics and regulation of carbohydrate catabolism in Bacillus. Annu Rev Microbiol. 1988;42:65–95. [PubMed]
  • Knowles JR. Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem. 1980;49:877–919. [PubMed]
  • Kofoid EC, Parkinson JS. Transmitter and receiver modules in bacterial signaling proteins. Proc Natl Acad Sci U S A. 1988 Jul;85(14):4981–4985. [PMC free article] [PubMed]
  • Kohlbrecher D, Eisermann R, Hengstenberg W. Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: molecular cloning and nucleotide sequence of the Staphylococcus carnosus ptsI gene and expression and complementation studies of the gene product. J Bacteriol. 1992 Apr;174(7):2208–2214. [PMC free article] [PubMed]
  • Kolb A, Spassky A, Chapon C, Blazy B, Buc H. On the different binding affinities of CRP at the lac, gal and malT promoter regions. Nucleic Acids Res. 1983 Nov 25;11(22):7833–7852. [PMC free article] [PubMed]
  • Kornberg HL. Fine control of sugar uptake by Escherichia coli. Symp Soc Exp Biol. 1973;27:175–193. [PubMed]
  • Kornberg HL, Elvin CM. Location and function of fruC, a gene involved in the regulation of fructose utilization by Escherichia coli. J Gen Microbiol. 1987 Feb;133(2):341–346. [PubMed]
  • Kornberg HL, Lambourne LT. Role of the phosphoenolpyruvate-dependent fructose phosphotransferase system in the utilization of mannose by Escherichia coli. Proc Biol Sci. 1992 Oct 22;250(1327):51–55. [PubMed]
  • Kornberg HL, Riordan C. Uptake of galactose into Escherichia coli by facilitated diffusion. J Gen Microbiol. 1976 May;94(1):75–89. [PubMed]
  • Kornberg HL, Smith J. Role of phosphofructokinase in the utilization of glucose by Escherichia coli. Nature. 1970 Jul 4;227(5253):44–46. [PubMed]
  • Kricker M, Hall BG. Directed evolution of cellobiose utilization in Escherichia coli K12. Mol Biol Evol. 1984 Feb;1(2):171–182. [PubMed]
  • Kricker M, Hall BG. Biochemical genetics of the cryptic gene system for cellobiose utilization in Escherichia coli K12. Genetics. 1987 Mar;115(3):419–429. [PMC free article] [PubMed]
  • Kubota Y, Iuchi S, Fujisawa A, Tanaka S. Separation of four components of the phosphoenolpyruvate: glucose phosphotransferase system in Vibrio parahaemolyticus. Microbiol Immunol. 1979;23(3):131–146. [PubMed]
  • Kühnau S, Reyes M, Sievertsen A, Shuman HA, Boos W. The activities of the Escherichia coli MalK protein in maltose transport, regulation, and inducer exclusion can be separated by mutations. J Bacteriol. 1991 Apr;173(7):2180–2186. [PMC free article] [PubMed]
  • Kukuruzinska MA, Harrington WF, Roseman S. Sugar transport by the bacterial phosphotransferase system. Studies on the molecular weight and association of enzyme I. J Biol Chem. 1982 Dec 10;257(23):14470–14476. [PubMed]
  • KUNDIG W, GHOSH S, ROSEMAN S. PHOSPHATE BOUND TO HISTIDINE IN A PROTEIN AS AN INTERMEDIATE IN A NOVEL PHOSPHO-TRANSFERASE SYSTEM. Proc Natl Acad Sci U S A. 1964 Oct;52:1067–1074. [PMC free article] [PubMed]
  • Kundig W, Roseman S. Sugar transport. II. Characterization of constitutive membrane-bound enzymes II of the Escherichia coli phosphotransferase system. J Biol Chem. 1971 Mar 10;246(5):1407–1418. [PubMed]
  • Kuroda M, de Waard S, Mizushima K, Tsuda M, Postma P, Tsuchiya T. Resistance of the melibiose carrier to inhibition by the phosphotransferase system due to substitutions of amino acid residues in the carrier of Salmonella typhimurium. J Biol Chem. 1992 Sep 15;267(26):18336–18341. [PubMed]
  • Laoide BM, Chambliss GH, McConnell DJ. Bacillus licheniformis alpha-amylase gene, amyL, is subject to promoter-independent catabolite repression in Bacillus subtilis. J Bacteriol. 1989 May;171(5):2435–2442. [PMC free article] [PubMed]
  • Lee CA, Saier MH., Jr Mannitol-specific enzyme II of the bacterial phosphotransferase system. III. The nucleotide sequence of the permease gene. J Biol Chem. 1983 Sep 10;258(17):10761–10767. [PubMed]
  • Lengeler J, Lin EC. Reversal of the mannitol-sorbitol diauxie in Escherichia coli. J Bacteriol. 1972 Nov;112(2):840–848. [PMC free article] [PubMed]
  • Lengeler J. Mutations affecting transport of the hexitols D-mannitol, D-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping. J Bacteriol. 1975 Oct;124(1):26–38. [PMC free article] [PubMed]
  • Lengeler J. Characterisation of mutants of Escherichia coli K12, selected by resistance to streptozotocin. Mol Gen Genet. 1980;179(1):49–54. [PubMed]
  • Lengeler J, Auburger AM, Mayer R, Pecher A. The phosphoenolpyruvate-dependent carbohydrate: phosphotransferase system enzymes II as chemoreceptors in chemotaxis of Escherichia coli K 12. Mol Gen Genet. 1981;183(1):163–170. [PubMed]
  • Lengeler JW, Mayer RJ, Schmid K. Phosphoenolpyruvate-dependent phosphotransferase system enzyme III and plasmid-encoded sucrose transport in Escherichia coli K-12. J Bacteriol. 1982 Jul;151(1):468–471. [PMC free article] [PubMed]
  • Lengeler J, Steinberger H. Analysis of regulatory mechanisms controlling the activity of the hexitol transport systems in Escherichia coli K12. Mol Gen Genet. 1978 Nov 16;167(1):75–82. [PubMed]
  • Lengeler J, Steinberger H. Analysis of the regulatory mechanisms controlling the synthesis of the hexitol transport systems in Escherichia coli K12. Mol Gen Genet. 1978 Aug 17;164(2):163–169. [PubMed]
  • Lengeler JW, Titgemeyer F, Vogler AP, Wöhrl BM. Structures and homologies of carbohydrate: phosphotransferase system (PTS) proteins. Philos Trans R Soc Lond B Biol Sci. 1990 Jan 30;326(1236):489–504. [PubMed]
  • Lengeler JW, Vogler AP. Molecular mechanisms of bacterial chemotaxis towards PTS-carbohydrates. FEMS Microbiol Rev. 1989 Jun;5(1-2):81–92. [PubMed]
  • Leonard JE, Saier MH., Jr Genetic dissection of catalytic activities of the Salmonella typhimurium mannitol enzyme II. J Bacteriol. 1981 Feb;145(2):1106–1109. [PMC free article] [PubMed]
  • Leonard JE, Saier MH., Jr Mannitol-specific enzyme II of the bacterial phosphotransferase system. II. Reconstitution of vectorial transphosphorylation in phospholipid vesicles. J Biol Chem. 1983 Sep 10;258(17):10757–10760. [PubMed]
  • Lévy S, De Reuse H, Danchin A. Antisense expression at the ptsH-ptsI locus of Escherichia coli. FEMS Microbiol Lett. 1989 Jan 1;48(1):35–38. [PubMed]
  • Lévy S, Zeng GQ, Danchin A. Cyclic AMP synthesis in Escherichia coli strains bearing known deletions in the pts phosphotransferase operon. Gene. 1990 Jan 31;86(1):27–33. [PubMed]
  • Liao DI, Kapadia G, Reddy P, Saier MH, Jr, Reizer J, Herzberg O. Structure of the IIA domain of the glucose permease of Bacillus subtilis at 2.2-A resolution. Biochemistry. 1991 Oct 8;30(40):9583–9594. [PubMed]
  • Liberman E, Saffen D, Roseman S, Peterkofsky A. Inhibition of E. coli adenylate cyclase activity by inorganic orthophosphate is dependent on IIIglc of the phosphoenolpyruvate:glycose phosphotransferase system. Biochem Biophys Res Commun. 1986 Dec 30;141(3):1138–1144. [PubMed]
  • LiCalsi C, Crocenzi TS, Freire E, Roseman S. Sugar transport by the bacterial phosphotransferase system. Structural and thermodynamic domains of enzyme I of Salmonella typhimurium. J Biol Chem. 1991 Oct 15;266(29):19519–19527. [PubMed]
  • Lin EC. The genetics of bacterial transport systems. Annu Rev Genet. 1970;4:225–262. [PubMed]
  • Lis JT, Schleif R. Different cyclic AMP requirements for induction of the arabinose and lactose operons of Escherichia coli. J Mol Biol. 1973 Sep 5;79(1):149–162. [PubMed]
  • Liu KD, Roseman S. Kinetic characterization and regulation of phosphoenolpyruvate-dependent methyl alpha-D-glucopyranoside transport by Salmonella typhimurium membrane vesicles. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7142–7145. [PMC free article] [PubMed]
  • Lodge J, Jacobson GR. Starvation-induced stimulation of sugar uptake in Streptococcus mutans is due to an effect on the activities of preexisting proteins of the phosphotransferase system. Infect Immun. 1988 Oct;56(10):2594–2600. [PMC free article] [PubMed]
  • Lolkema JS, Dijkstra DS, Robillard GT. Mechanics of solute translocation catalyzed by enzyme IImtl of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli. Biochemistry. 1992 Jun 23;31(24):5514–5521. [PubMed]
  • Lolkema JS, Dijkstra DS, ten Hoeve-Duurkens RH, Robillard GT. The membrane-bound domain of the phosphotransferase enzyme IImtl of Escherichia coli constitutes a mannitol translocating unit. Biochemistry. 1990 Nov 27;29(47):10659–10663. [PubMed]
  • Lolkema JS, Dijkstra DS, ten Hoeve-Duurkens RH, Robillard GT. Interaction between the cytoplasmic and membrane-bound domains of enzyme IImtl of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system. Biochemistry. 1991 Jul 9;30(27):6721–6726. [PubMed]
  • Lolkema JS, Robillard GT. Subunit structure and activity of the mannitol-specific enzyme II of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system solubilized in detergent. Biochemistry. 1990 Oct 30;29(43):10120–10125. [PubMed]
  • Lolkema JS, ten Hoeve-Duurkens RH, Dijkstra DS, Robillard GT. Mechanistic coupling of transport and phosphorylation activity by enzyme IImtl of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system. Biochemistry. 1991 Jul 9;30(27):6716–6721. [PubMed]
  • Lolkema JS, ten Hoeve-Duurkens RH, Robillard GT. The phosphoenolpyruvate-dependent fructose-specific phosphotransferase system in Rhodopseudomonas sphaeroides. Mechanism for transfer of the phosphoryl group from phosphoenolpyruvate to fructose. Eur J Biochem. 1985 Jun 18;149(3):625–631. [PubMed]
  • Lolkema JS, ten Hoeve-Duurkens RH, Robillard GT. The phosphoenolpyruvate-dependent fructose-specific phosphotransferase system in Rhodopseudomonas sphaeroides. Energetics of the phosphoryl group transfer from phosphoenolpyruvate to fructose. Eur J Biochem. 1986 Jan 15;154(2):387–393. [PubMed]
  • Lolkema JS, ten Hoeve-Duurkens RH, Robillard GT. The phosphoenolpyruvate-dependent fructose-specific phosphotransferase system in Rhodopseudomonas sphaeroides. EIIFru possesses a Zn2+-binding site and a dithiol/disulfide redox centre. Eur J Biochem. 1986 Feb 3;154(3):651–656. [PubMed]
  • London J, Hausman SZ. Purification and characterization of the IIIXtl phospho-carrier protein of the phosphoenolpyruvate-dependent xylitol:phosphotransferase found in Lactobacillus casei C183. J Bacteriol. 1983 Nov;156(2):611–619. [PMC free article] [PubMed]
  • Lukat GS, McCleary WR, Stock AM, Stock JB. Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):718–722. [PMC free article] [PubMed]
  • Mahadevan S, Reynolds AE, Wright A. Positive and negative regulation of the bgl operon in Escherichia coli. J Bacteriol. 1987 Jun;169(6):2570–2578. [PMC free article] [PubMed]
  • Manayan R, Tenn G, Yee HB, Desai JD, Yamada M, Saier MH., Jr Genetic analyses of the mannitol permease of Escherichia coli: isolation and characterization of a transport-deficient mutant which retains phosphorylation activity. J Bacteriol. 1988 Mar;170(3):1290–1296. [PMC free article] [PubMed]
  • Manoil C, Beckwith J. A genetic approach to analyzing membrane protein topology. Science. 1986 Sep 26;233(4771):1403–1408. [PubMed]
  • Maréchal LR. Transport and metabolism of trehalose in Escherichia coli and Salmonella typhimurium. Arch Microbiol. 1984 Jan;137(1):70–73. [PubMed]
  • Markwell J, Shimamoto GT, Bissett DL, Anderson RL. Pathway of galactitol catabolism in Klebsiella pneumoniae. Biochem Biophys Res Commun. 1976 Jul 12;71(1):221–227. [PubMed]
  • Marquet M, Creignou MC, Dedonder R. The phosphoenolpyruvate : methyl-alpha-D-glucoside phosphotransferase system in Bacillus subtilis Marburg 168 : purification and identification of the phosphocarrier protein (HPr). Biochimie. 1976;58(4):435–441. [PubMed]
  • Martin-Verstraete I, Débarbouillé M, Klier A, Rapoport G. Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J Mol Biol. 1990 Aug 5;214(3):657–671. [PubMed]
  • Mason PW, Carbone DP, Cushman RA, Waggoner AS. The importance of inorganic phosphate in regulation of energy metabolism of Streptococcus lactis. J Biol Chem. 1981 Feb 25;256(4):1861–1866. [PubMed]
  • Mattoo RL, Waygood EB. Determination of the levels of HPr and enzyme I of the phosphoenolpyruvate-sugar phosphotransferase system in Escherichia coli and Salmonella typhimurium. Can J Biochem Cell Biol. 1983 Jan;61(1):29–37. [PubMed]
  • McEntee K. Genetic analysis of the Escherichia coli K-12 srl region. J Bacteriol. 1977 Dec;132(3):904–911. [PMC free article] [PubMed]
  • McKay LL, Walter LA, Sandine WE, Elliker PR. Involvement of phosphoenolpyruvate in lactose utilization by group N streptococci. J Bacteriol. 1969 Aug;99(2):603–610. [PMC free article] [PubMed]
  • Meadow ND, Coyle P, Komoryia A, Anfinsen CB, Roseman S. Limited proteolysis of IIIGlc, a regulatory protein of the phosphoenolpyruvate:glycose phosphotransferase system, by membrane-associated enzymes from Salmonella typhimurium and Escherichia coli. J Biol Chem. 1986 Oct 15;261(29):13504–13509. [PubMed]
  • Meadow ND, Fox DK, Roseman S. The bacterial phosphoenolpyruvate: glycose phosphotransferase system. Annu Rev Biochem. 1990;59:497–542. [PubMed]
  • Meadow ND, Revuelta R, Chen VN, Colwell RR, Roseman S. Phosphoenolpyruvate:glycose phosphotransferase system in species of Vibrio, a widely distributed marine bacterial genus. J Bacteriol. 1987 Nov;169(11):4893–4900. [PMC free article] [PubMed]
  • Meadow ND, Roseman S. Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of a glucose-specific phosphocarrier protein (IIIGlc) from Salmonella typhimurium. J Biol Chem. 1982 Dec 10;257(23):14526–14537. [PubMed]
  • Meadow ND, Rosenberg JM, Pinkert HM, Roseman S. Sugar transport by the bacterial phosphotransferase system. Evidence that crr is the structural gene for the Salmonella typhimurium glucose-specific phosphocarrier protein IIIGlc. J Biol Chem. 1982 Dec 10;257(23):14538–14542. [PubMed]
  • Meins M, Jenö P, Müller D, Richter WJ, Rosenbusch JP, Erni B. Cysteine phosphorylation of the glucose transporter of Escherichia coli. J Biol Chem. 1993 Jun 5;268(16):11604–11609. [PubMed]
  • Meins M, Zanolari B, Rosenbusch JP, Erni B. Glucose permease of Escherichia coli. Purification of the IIGlc subunit and functional characterization of its oligomeric forms. J Biol Chem. 1988 Sep 15;263(26):12986–12993. [PubMed]
  • Melton T, Hartman PE, Stratis JP, Lee TL, Davis AT. Chemotaxis of Salmonella typhimurium to amino acids and some sugars. J Bacteriol. 1978 Feb;133(2):708–716. [PMC free article] [PubMed]
  • Merrick MJ, Coppard JR. Mutations in genes downstream of the rpoN gene (encoding sigma 54) of Klebsiella pneumoniae affect expression from sigma 54-dependent promoters. Mol Microbiol. 1989 Dec;3(12):1765–1775. [PubMed]
  • Mimura CS, Eisenberg LB, Jacobson GR. Resolution of the phosphotransferase enzymes of Streptococcus mutans: purification and preliminary characterization of a heat-stable phosphocarrier protein. Infect Immun. 1984 Jun;44(3):708–715. [PMC free article] [PubMed]
  • Misko TP, Mitchell WJ, Meadow ND, Roseman S. Sugar transport by the bacterial phosphotransferase system. Reconstitution of inducer exclusion in Salmonella typhimurium membrane vesicles. J Biol Chem. 1987 Nov 25;262(33):16261–16266. [PubMed]
  • Misset O, Blaauw M, Postma PW, Robillard GT. Bacterial phosphoenolpyruvate-dependent phosphotransferase system. Mechanism of the transmembrane sugar translocation and phosphorylation. Biochemistry. 1983 Dec 20;22(26):6163–6170. [PubMed]
  • Misset O, Brouwer M, Robillard GT. Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system. Evidence that the dimer is the active form of enzyme I. Biochemistry. 1980 Mar 4;19(5):883–890. [PubMed]
  • Mitchell WJ, Saffen DW, Roseman S. Sugar transport by the bacterial phosphotransferase system. In vivo regulation of lactose transport in Escherichia coli by IIIGlc, a protein of the phosphoenolpyruvate:glycose phosphotransferase system. J Biol Chem. 1987 Nov 25;262(33):16254–16260. [PubMed]
  • Mitchell WJ, Shaw JE, Andrews L. Properties of the glucose phosphotransferase system of Clostridium acetobutylicum NCIB 8052. Appl Environ Microbiol. 1991 Sep;57(9):2534–2539. [PMC free article] [PubMed]
  • Mock M, Crasnier M, Duflot E, Dumay V, Danchin A. Structural and functional relationships between Pasteurella multocida and enterobacterial adenylate cyclases. J Bacteriol. 1991 Oct;173(19):6265–6269. [PMC free article] [PubMed]
  • Morris PW, Binkley JP, Henson JM, Kuempel PL. Cloning and location of the dgsA gene of Escherichia coli. J Bacteriol. 1985 Aug;163(2):785–786. [PMC free article] [PubMed]
  • Morse ML, Hill KL, Egan JB, Hengstenberg W. Metabolism of lactose by Staphylococcus aureus and its genetic basis. J Bacteriol. 1968 Jun;95(6):2270–2274. [PMC free article] [PubMed]
  • Mueller EG, Khandekar SS, Knowles JR, Jacobson GR. Stereochemical course of the reactions catalyzed by the bacterial phosphoenolpyruvate:mannitol phosphotransferase system. Biochemistry. 1990 Jul 24;29(29):6892–6896. [PubMed]
  • Narindrasorasak S, Bridger WA. Phosphoenolypyruvate synthetase of Escherichia coli: molecular weight, subunit composition, and identification of phosphohistidine in phosphoenzyme intermediate. J Biol Chem. 1977 May 25;252(10):3121–3127. [PubMed]
  • Nelson SO, Lengeler J, Postma PW. Role of IIIGlc of the phosphoenolpyruvate-glucose phosphotransferase system in inducer exclusion in Escherichia coli. J Bacteriol. 1984 Oct;160(1):360–364. [PMC free article] [PubMed]
  • Nelson SO, Postma PW. Interactions in vivo between IIIGlc of the phosphoenolpyruvate:sugar phosphotransferase system and the glycerol and maltose uptake systems of Salmonella typhimurium. Eur J Biochem. 1984 Feb 15;139(1):29–34. [PubMed]
  • Nelson SO, Scholte BJ, Postma PW. Phosphoenolpyruvate:sugar phosphotransferase system-mediated regulation of carbohydrate metabolism in Salmonella typhimurium. J Bacteriol. 1982 May;150(2):604–615. [PMC free article] [PubMed]
  • Nelson SO, Schuitema AR, Benne R, van der Ploeg LH, Plijter JS, Aan F, Postma PW. Molecular cloning, sequencing, and expression of the crr gene: the structural gene for IIIGlc of the bacterial PEP:glucose phosphotransferase system. EMBO J. 1984 Jul;3(7):1587–1593. [PMC free article] [PubMed]
  • Nelson SO, Schuitema AR, Postma PW. The phosphoenolpyruvate:glucose phosphotransferase system of Salmonella typhimurium. The phosphorylated form of IIIGlc. Eur J Biochem. 1986 Jan 15;154(2):337–341. [PubMed]
  • Nelson SO, Wright JK, Postma PW. The mechanism of inducer exclusion. Direct interaction between purified III of the phosphoenolpyruvate:sugar phosphotransferase system and the lactose carrier of Escherichia coli. EMBO J. 1983;2(5):715–720. [PMC free article] [PubMed]
  • Neyroz P, Brand L, Roseman S. Sugar transport by the bacterial phosphotransferase system. The intrinsic fluorescence of enzyme I. J Biol Chem. 1987 Nov 25;262(33):15900–15907. [PubMed]
  • Nicholson WL, Park YK, Henkin TM, Won M, Weickert MJ, Gaskell JA, Chambliss GH. Catabolite repression-resistant mutations of the Bacillus subtilis alpha-amylase promoter affect transcription levels and are in an operator-like sequence. J Mol Biol. 1987 Dec 20;198(4):609–618. [PubMed]
  • Niersbach M, Kreuzaler F, Geerse RH, Postma PW, Hirsch HJ. Cloning and nucleotide sequence of the Escherichia coli K-12 ppsA gene, encoding PEP synthase. Mol Gen Genet. 1992 Jan;231(2):332–336. [PubMed]
  • Niwano M, Taylor BL. Novel sensory adaptation mechanism in bacterial chemotaxis to oxygen and phosphotransferase substrates. Proc Natl Acad Sci U S A. 1982 Jan;79(1):11–15. [PMC free article] [PubMed]
  • Novotny MJ, Frederickson WL, Waygood EB, Saier MH., Jr Allosteric regulation of glycerol kinase by enzyme IIIglc of the phosphotransferase system in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1985 May;162(2):810–816. [PMC free article] [PubMed]
  • Nuoffer C, Zanolari B, Erni B. Glucose permease of Escherichia coli. The effect of cysteine to serine mutations on the function, stability, and regulation of transport and phosphorylation. J Biol Chem. 1988 May 15;263(14):6647–6655. [PubMed]
  • Orchard LM, Kornberg HL. Sequence similarities between the gene specifying 1-phosphofructokinase (fruK), genes specifying other kinases in Escherichia coli K12, and lacC of Staphylococcus aureus. Proc Biol Sci. 1990 Nov 22;242(1304):87–90. [PubMed]
  • Oskouian B, Stewart GC. Cloning and characterization of the repressor gene of the Staphylococcus aureus lactose operon. J Bacteriol. 1987 Dec;169(12):5459–5465. [PMC free article] [PubMed]
  • Oskouian B, Stewart GC. Repression and catabolite repression of the lactose operon of Staphylococcus aureus. J Bacteriol. 1990 Jul;172(7):3804–3812. [PMC free article] [PubMed]
  • Osumi T, Saier MH., Jr Regulation of lactose permease activity by the phosphoenolpyruvate:sugar phosphotransferase system: evidence for direct binding of the glucose-specific enzyme III to the lactose permease. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1457–1461. [PMC free article] [PubMed]
  • Parker LL, Hall BG. A fourth Escherichia coli gene system with the potential to evolve beta-glucoside utilization. Genetics. 1988 Jul;119(3):485–490. [PMC free article] [PubMed]
  • Parker LL, Hall BG. Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12. Genetics. 1990 Mar;124(3):455–471. [PMC free article] [PubMed]
  • Parker LL, Hall BG. Mechanisms of activation of the cryptic cel operon of Escherichia coli K12. Genetics. 1990 Mar;124(3):473–482. [PMC free article] [PubMed]
  • Parkinson JS, Kofoid EC. Communication modules in bacterial signaling proteins. Annu Rev Genet. 1992;26:71–112. [PubMed]
  • Parra F, Jones-Mortimer MC, Kornberg HL. Phosphotransferase-mediated regulation of carbohydrate utilization in Escherichia coli K12: the nature of the iex (crr) and gsr (tgs) mutations. J Gen Microbiol. 1983 Feb;129(2):337–348. [PubMed]
  • Pas HH, Ellory JC, Robillard GT. Bacterial phosphoenolpyruvate-dependent phosphotransferase system: association state of membrane-bound mannitol-specific enzyme II demonstrated by inactivation. Biochemistry. 1987 Oct 20;26(21):6689–6696. [PubMed]
  • Pas HH, Meyer GH, Kruizinga WH, Tamminga KS, van Weeghel RP, Robillard GT. 31phospho-NMR demonstration of phosphocysteine as a catalytic intermediate on the Escherichia coli phosphotransferase system EIIMtl. J Biol Chem. 1991 Apr 15;266(11):6690–6692. [PubMed]
  • Pas HH, Robillard GT. Enzyme IIMtl of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: identification of the activity-linked cysteine on the mannitol carrier. Biochemistry. 1988 Jul 26;27(15):5515–5519. [PubMed]
  • Pas HH, Robillard GT. S-phosphocysteine and phosphohistidine are intermediates in the phosphoenolpyruvate-dependent mannitol transport catalyzed by Escherichia coli EIIMtl. Biochemistry. 1988 Aug 9;27(16):5835–5839. [PubMed]
  • Pas HH, ten Hoeve-Duurkens RH, Robillard GT. Bacterial phosphoenolpyruvate-dependent phosphotransferase system: mannitol-specific EII contains two phosphoryl binding sites per monomer and one high-affinity mannitol binding site per dimer. Biochemistry. 1988 Jul 26;27(15):5520–5525. [PubMed]
  • Pastan I, Perlman RL. Repression of beta-galactosidase synthesis by glucose in phosphotransferase mutants of Escherichia coli. Repression in the absence of glucose phosphorylation. J Biol Chem. 1969 Nov 10;244(21):5836–5842. [PubMed]
  • Pelton JG, Torchia DA, Meadow ND, Roseman S. Structural comparison of phosphorylated and unphosphorylated forms of IIIGlc, a signal-transducing protein from Escherichia coli, using three-dimensional NMR techniques. Biochemistry. 1992 Jun 9;31(22):5215–5224. [PubMed]
  • Pelton JG, Torchia DA, Meadow ND, Wong CY, Roseman S. 1H, 15N, and 13C NMR signal assignments of IIIGlc, a signal-transducing protein of Escherichia coli, using three-dimensional triple-resonance techniques. Biochemistry. 1991 Oct 15;30(41):10043–10057. [PubMed]
  • Pelton JG, Torchia DA, Meadow ND, Wong CY, Roseman S. Secondary structure of the phosphocarrier protein IIIGlc, a signal-transducing protein from Escherichia coli, determined by heteronuclear three-dimensional NMR spectroscopy. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3479–3483. [PMC free article] [PubMed]
  • Perham RN. Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry. 1991 Sep 3;30(35):8501–8512. [PubMed]
  • Peri KG, Goldie H, Waygood EB. Cloning and characterization of the N-acetylglucosamine operon of Escherichia coli. Biochem Cell Biol. 1990 Jan;68(1):123–137. [PubMed]
  • Peri KG, Waygood EB. Sequence of cloned enzyme IIN-acetylglucosamine of the phosphoenolpyruvate:N-acetylglucosamine phosphotransferase system of Escherichia coli. Biochemistry. 1988 Aug 9;27(16):6054–6061. [PubMed]
  • Peterkofsky A, Gazdar C. Interaction of enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system with adenylate cyclase of Escherichia coli. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2920–2924. [PMC free article] [PubMed]
  • Peterkofsky A, Gazdar C. Escherichia coli adenylate cyclase complex: regulation by the proton electrochemical gradient. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1099–1103. [PMC free article] [PubMed]
  • Peterkofsky A, Svenson I, Amin N. Regulation of Escherichia coli adenylate cyclase activity by the phosphoenolpyruvate:sugar phosphotransferase system. FEMS Microbiol Rev. 1989 Jun;5(1-2):103–108. [PubMed]
  • Plumbridge JA. Sequence of the nagBACD operon in Escherichia coli K12 and pattern of transcription within the nag regulon. Mol Microbiol. 1989 Apr;3(4):505–515. [PubMed]
  • Plumbridge JA. Induction of the nag regulon of Escherichia coli by N-acetylglucosamine and glucosamine: role of the cyclic AMP-catabolite activator protein complex in expression of the regulon. J Bacteriol. 1990 May;172(5):2728–2735. [PMC free article] [PubMed]
  • Plumbridge JA. Repression and induction of the nag regulon of Escherichia coli K-12: the roles of nagC and nagA in maintenance of the uninduced state. Mol Microbiol. 1991 Aug;5(8):2053–2062. [PubMed]
  • Plumbridge J, Kolb A. CAP and Nag repressor binding to the regulatory regions of the nagE-B and manX genes of Escherichia coli. J Mol Biol. 1991 Feb 20;217(4):661–679. [PubMed]
  • Pocalyko DJ, Carroll LJ, Martin BM, Babbitt PC, Dunaway-Mariano D. Analysis of sequence homologies in plant and bacterial pyruvate phosphate dikinase, enzyme I of the bacterial phosphoenolpyruvate: sugar phosphotransferase system and other PEP-utilizing enzymes. Identification of potential catalytic and regulatory motifs. Biochemistry. 1990 Dec 4;29(48):10757–10765. [PubMed]
  • Poolman B, Modderman R, Reizer J. Lactose transport system of Streptococcus thermophilus. The role of histidine residues. J Biol Chem. 1992 May 5;267(13):9150–9157. [PubMed]
  • Poolman B, Royer TJ, Mainzer SE, Schmidt BF. Lactose transport system of Streptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenolpyruvate-dependent phosphotransferase systems. J Bacteriol. 1989 Jan;171(1):244–253. [PMC free article] [PubMed]
  • Portlock SH, Lee Y, Tomich JM, Tamm LK. Insertion and folding of the amino-terminal amphiphilic signal sequences of the mannitol and glucitol permeases of Escherichia coli. J Biol Chem. 1992 Jun 5;267(16):11017–11022. [PubMed]
  • Postma PW. Involvement of the phosphotransferase system in galactose transport in Salmonella typhimurium. FEBS Lett. 1976 Jan 1;61(1):49–53. [PubMed]
  • Postma PW. Defective enzyme II-BGlc of the phosphoenolpyruvate:sugar phosphotransferase system leading to uncoupling of transport and phosphorylation in Salmonella typhimurium. J Bacteriol. 1981 Aug;147(2):382–389. [PMC free article] [PubMed]
  • Postma PW, Broekhuizen CP, Geerse RH. The role of the PEP: carbohydrate phosphotransferase system in the regulation of bacterial metabolism. FEMS Microbiol Rev. 1989 Jun;5(1-2):69–80. [PubMed]
  • Postma PW, Epstein W, Schuitema AR, Nelson SO. Interaction between IIIGlc of the phosphoenolpyruvate:sugar phosphotransferase system and glycerol kinase of Salmonella typhimurium. J Bacteriol. 1984 Apr;158(1):351–353. [PMC free article] [PubMed]
  • Postma PW, Keizer HG, Koolwijk P. Transport of trehalose in Salmonella typhimurium. J Bacteriol. 1986 Dec;168(3):1107–1111. [PMC free article] [PubMed]
  • Postma PW, Lengeler JW. Phosphoenolpyruvate:carbohydrate phosphotransferase system of bacteria. Microbiol Rev. 1985 Sep;49(3):232–269. [PMC free article] [PubMed]
  • Postma PW, Stock JB. Enzymes II of the phosphotransferase system do not catalyze sugar transport in the absence of phosphorylation. J Bacteriol. 1980 Feb;141(2):476–484. [PMC free article] [PubMed]
  • Potter K, Chaloner-Larsson G, Yamazaki H. Abnormally high rate of cyclic AMP excretion from an Escherichia coli mutant deficient in cyclic AMP receptor protein. Biochem Biophys Res Commun. 1974 Mar 25;57(2):379–385. [PubMed]
  • Powers DA, Roseman S. The primary structure of Salmonella typhimurium HPr, a phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system. A correction. J Biol Chem. 1984 Dec 25;259(24):15212–15214. [PubMed]
  • Prasad I, Schaefler S. Regulation of the beta-glucoside system in Escherchia coli K-12. J Bacteriol. 1974 Nov;120(2):638–650. [PMC free article] [PubMed]
  • Presper KA, Wong CY, Liu L, Meadow ND, Roseman S. Site-directed mutagenesis of the phosphocarrier protein. IIIGlc, a major signal-transducing protein in Escherichia coli. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4052–4055. [PMC free article] [PubMed]
  • Pries A, Priefert H, Krüger N, Steinbüchel A. Identification and characterization of two Alcaligenes eutrophus gene loci relevant to the poly(beta-hydroxybutyric acid)-leaky phenotype which exhibit homology to ptsH and ptsI of Escherichia coli. J Bacteriol. 1991 Sep;173(18):5843–5853. [PMC free article] [PubMed]
  • Prior TI, Kornberg HL. Nucleotide sequence of fruA, the gene specifying enzyme IIfru of the phosphoenolpyruvate-dependent sugar phosphotransferase system in Escherichia coli K12. J Gen Microbiol. 1988 Oct;134(10):2757–2768. [PubMed]
  • Reddy P, Meadow N, Roseman S, Peterkofsky A. Reconstitution of regulatory properties of adenylate cyclase in Escherichia coli extracts. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8300–8304. [PMC free article] [PubMed]
  • Reddy P, Miller D, Peterkofsky A. Stimulation of Escherichia coli adenylate cyclase activity by elongation factor Tu, a GTP-binding protein essential for protein synthesis. J Biol Chem. 1986 Sep 5;261(25):11448–11451. [PubMed]
  • Reiche B, Frank R, Deutscher J, Meyer N, Hengstenberg W. Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: purification and characterization of the mannitol-specific enzyme IIImtl of Staphylococcus aureus and Staphylococcus carnosus and homology with the enzyme IImtl of Escherichia coli. Biochemistry. 1988 Aug 23;27(17):6512–6516. [PubMed]
  • Reider E, Wagner EF, Schweiger M. Control of phosphoenolpyruvate-dependent phosphotransferase-mediated sugar transport in Escherichia coli by energization of the cell membrane. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5529–5533. [PMC free article] [PubMed]
  • Reidl J, Boos W. The malX malY operon of Escherichia coli encodes a novel enzyme II of the phosphotransferase system recognizing glucose and maltose and an enzyme abolishing the endogenous induction of the maltose system. J Bacteriol. 1991 Aug;173(15):4862–4876. [PMC free article] [PubMed]
  • Reiner AM. Xylitol and D-arabitol toxicities due to derepressed fructose, galactitol, and sorbitol phosphotransferases of Escherichia coli. J Bacteriol. 1977 Oct;132(1):166–173. [PMC free article] [PubMed]
  • Reizer A, Pao GM, Saier MH., Jr Evolutionary relationships among the permease proteins of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Construction of phylogenetic trees and possible relatedness to proteins of eukaryotic mitochondria. J Mol Evol. 1991 Aug;33(2):179–193. [PubMed]
  • Reizer J, Deutscher J, Saier MH., Jr Metabolite-sensitive, ATP-dependent, protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system in gram-positive bacteria. Biochimie. 1989 Sep-Oct;71(9-10):989–996. [PubMed]
  • Reizer J, Novotny MJ, Hengstenberg W, Saier MH., Jr Properties of ATP-dependent protein kinase from Streptococcus pyogenes that phosphorylates a seryl residue in HPr, a phosphocarrier protein of the phosphotransferase system. J Bacteriol. 1984 Oct;160(1):333–340. [PMC free article] [PubMed]
  • Reizer J, Novotny MJ, Panos C, Saier MH., Jr Mechanism of inducer expulsion in Streptococcus pyogenes: a two-step process activated by ATP. J Bacteriol. 1983 Oct;156(1):354–361. [PMC free article] [PubMed]
  • Reizer J, Novotny MJ, Stuiver I, Saier MH., Jr Regulation of glycerol uptake by the phosphoenolpyruvate-sugar phosphotransferase system in Bacillus subtilis. J Bacteriol. 1984 Jul;159(1):243–250. [PMC free article] [PubMed]
  • Reizer J, Panos C. Regulation of beta-galactoside phosphate accumulation in Streptococcus pyogenes by an expulsion mechanism. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5497–5501. [PMC free article] [PubMed]
  • Reizer J, Peterkofsky A, Romano AH. Evidence for the presence of heat-stable protein (HPr) and ATP-dependent HPr kinase in heterofermentative lactobacilli lacking phosphoenolpyruvate:glycose phosphotransferase activity. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2041–2045. [PMC free article] [PubMed]
  • Reizer J, Reizer A, Saier MH., Jr The cellobiose permease of Escherichia coli consists of three proteins and is homologous to the lactose permease of Staphylococcus aureus. Res Microbiol. 1990 Nov-Dec;141(9):1061–1067. [PubMed]
  • Reizer J, Reizer A, Saier MH, Jr, Jacobson GR. A proposed link between nitrogen and carbon metabolism involving protein phosphorylation in bacteria. Protein Sci. 1992 Jun;1(6):722–726. [PMC free article] [PubMed]
  • Reizer J, Saier MH, Jr, Deutscher J, Grenier F, Thompson J, Hengstenberg W. The phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: properties, mechanism, and regulation. Crit Rev Microbiol. 1988;15(4):297–338. [PubMed]
  • Reizer J, Saier MH., Jr Involvement of lactose enzyme II of the phosphotransferase system in rapid expulsion of free galactosides from Streptococcus pyogenes. J Bacteriol. 1983 Oct;156(1):236–242. [PMC free article] [PubMed]
  • Reizer J, Sutrina SL, Saier MH, Stewart GC, Peterkofsky A, Reddy P. Mechanistic and physiological consequences of HPr(ser) phosphorylation on the activities of the phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: studies with site-specific mutants of HPr. EMBO J. 1989 Jul;8(7):2111–2120. [PMC free article] [PubMed]
  • Reizer J, Sutrina SL, Wu LF, Deutscher J, Reddy P, Saier MH., Jr Functional interactions between proteins of the phosphoenolpyruvate:sugar phosphotransferase systems of Bacillus subtilis and Escherichia coli. J Biol Chem. 1992 May 5;267(13):9158–9169. [PubMed]
  • Rephaeli AW, Saier MH., Jr Kinetic analyses of the sugar phosphate:sugar transphosphorylation reaction catalyzed by the glucose enzyme II complex of the bacterial phosphotransferase system. J Biol Chem. 1978 Nov 10;253(21):7595–7597. [PubMed]
  • Rephaeli AW, Saier MH., Jr Regulation of genes coding for enzyme constituents of the bacterial phosphotransferase system. J Bacteriol. 1980 Feb;141(2):658–663. [PMC free article] [PubMed]
  • Reynolds AE, Felton J, Wright A. Insertion of DNA activates the cryptic bgl operon in E. coli K12. Nature. 1981 Oct 22;293(5834):625–629. [PubMed]
  • Robillard GT, Blaauw M. Enzyme II of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: protein-protein and protein-phospholipid interactions. Biochemistry. 1987 Sep 8;26(18):5796–5803. [PubMed]
  • Robillard GT, Konings WN. Physical mechanism for regulation of phosphoenolpyruvate-dependent glucose transport activity in Escherichia coli. Biochemistry. 1981 Aug 18;20(17):5025–5032. [PubMed]
  • Robillard GT, Lolkema JS. Enzymes II of the phosphoenolpyruvate-dependent sugar transport systems: a review of their structure and mechanism of sugar transport. Biochim Biophys Acta. 1988 Oct 11;947(3):493–519. [PubMed]
  • Roehl RA, Vinopal RT. Lack of glucose phosphotransferase function in phosphofructokinase mutants of Escherichia coli. J Bacteriol. 1976 May;126(2):852–860. [PMC free article] [PubMed]
  • Roehl RA, Vinopal RT. Genetic locus, distant from ptsM, affecting enzyme IIA/IIB function in Escherichia coli K-12. J Bacteriol. 1980 Apr;142(1):120–130. [PMC free article] [PubMed]
  • Rogers MJ, Ohgi T, Plumbridge J, Söll D. Nucleotide sequences of the Escherichia coli nagE and nagB genes: the structural genes for the N-acetylglucosamine transport protein of the bacterial phosphoenolpyruvate: sugar phosphotransferase system and for glucosamine-6-phosphate deaminase. Gene. 1988;62(2):197–207. [PubMed]
  • Romano AH, Brino G, Peterkofsky A, Reizer J. Regulation of beta-galactoside transport and accumulation in heterofermentative lactic acid bacteria. J Bacteriol. 1987 Dec;169(12):5589–5596. [PMC free article] [PubMed]
  • Romano AH, Saier MH, Jr, Harriott OT, Reizer J. Physiological studies on regulation of glycerol utilization by the phosphoenolpyruvate:sugar phosphotransferase system in Enterococcus faecalis. J Bacteriol. 1990 Dec;172(12):6741–6748. [PMC free article] [PubMed]
  • Roossien FF, Blaauw M, Robillard GT. Kinetics and subunit interaction of the mannitol-specific enzyme II of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system. Biochemistry. 1984 Oct 9;23(21):4934–4939. [PubMed]
  • Roossien FF, Robillard GT. Mannitol-specific carrier protein from the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system can be extracted as a dimer from the membrane. Biochemistry. 1984 Nov 20;23(24):5682–5685. [PubMed]
  • Roossien FF, van Es-Spiekman W, Robillard GT. Dimeric enzyme IImtl of the E. coli phosphoenolpyruvate-dependent phosphotransferase system. Cross-linking studies with bifunctional sulfhydryl reagents. FEBS Lett. 1986 Feb 17;196(2):284–290. [PubMed]
  • Roseman S. Sialic acid, serendipity, and sugar transport: discovery of the bacterial phosphotransferase system. FEMS Microbiol Rev. 1989 Jun;5(1-2):3–11. [PubMed]
  • Rosenberg H, Hardy CM. Conversion of D-mannitol to D-ribose: a newly discovered pathway in Escherichia coli. J Bacteriol. 1984 Apr;158(1):69–72. [PMC free article] [PubMed]
  • Rosey EL, Oskouian B, Stewart GC. Lactose metabolism by Staphylococcus aureus: characterization of lacABCD, the structural genes of the tagatose 6-phosphate pathway. J Bacteriol. 1991 Oct;173(19):5992–5998. [PMC free article] [PubMed]
  • Rosey EL, Stewart GC. Nucleotide and deduced amino acid sequences of the lacR, lacABCD, and lacFE genes encoding the repressor, tagatose 6-phosphate gene cluster, and sugar-specific phosphotransferase system components of the lactose operon of Streptococcus mutans. J Bacteriol. 1992 Oct;174(19):6159–6170. [PMC free article] [PubMed]
  • Ruijter GJ, Postma PW, van Dam K. Adaptation of Salmonella typhimurium mutants containing uncoupled enzyme IIGlc to glucose-limited conditions. J Bacteriol. 1990 Sep;172(9):4783–4789. [PMC free article] [PubMed]
  • Ruyter GJ, Postma PW, van Dam K. Control of glucose metabolism by enzyme IIGlc of the phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli. J Bacteriol. 1991 Oct;173(19):6184–6191. [PMC free article] [PubMed]
  • Ruijter GJ, Postma PW, van Dam K. Energetics of glucose uptake in a Salmonella typhimurium mutant containing uncoupled enzyme IIGlc. Arch Microbiol. 1991;155(3):234–237. [PubMed]
  • Ruijter GJ, van Meurs G, Verwey MA, Postma PW, van Dam K. Analysis of mutations that uncouple transport from phosphorylation in enzyme IIGlc of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system. J Bacteriol. 1992 May;174(9):2843–2850. [PMC free article] [PubMed]
  • Rygus T, Hillen W. Catabolite repression of the xyl operon in Bacillus megaterium. J Bacteriol. 1992 May;174(9):3049–3055. [PMC free article] [PubMed]
  • Saier MH., Jr Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Microbiol Rev. 1989 Mar;53(1):109–120. [PMC free article] [PubMed]
  • Saier MH, Jr, Novotny MJ, Comeau-Fuhrman D, Osumi T, Desai JD. Cooperative binding of the sugar substrates and allosteric regulatory protein (enzyme IIIGlc of the phosphotransferase system) to the lactose and melibiose permeases in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1983 Sep;155(3):1351–1357. [PMC free article] [PubMed]
  • Saier MH, Jr, Reizer J. Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Bacteriol. 1992 Mar;174(5):1433–1438. [PMC free article] [PubMed]
  • Saier MH, Roseman S. Inducer exclusion and repression of enzyme synthesis in mutants of Salmonella typhimurium defective in enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system. J Biol Chem. 1972 Feb 10;247(3):972–975. [PubMed]
  • Saier MH, Jr, Roseman S. Sugar transport. The crr mutation: its effect on repression of enzyme synthesis. J Biol Chem. 1976 Nov 10;251(21):6598–6605. [PubMed]
  • Saier MH, Jr, Schmidt MR, Lin P. Phosphoryl exchange reaction catalyzed by enzyme I of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Kinetic characterization. J Biol Chem. 1980 Sep 25;255(18):8579–8584. [PubMed]
  • Saier MH, Jr, Simoni RD. Regulation of carbohydrate uptake in gram-positive bacteria. J Biol Chem. 1976 Feb 10;251(3):893–894. [PubMed]
  • Simoni RD, Roseman S, Saier MH., Jr Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system. J Biol Chem. 1976 Nov 10;251(21):6584–6597. [PubMed]
  • Saier MH, Jr, Straud H, Massman LS, Judice JJ, Newman MJ, Feucht BU. Permease-specific mutations in Salmonella typhimurium and Escherichia coli that release the glycerol, maltose, melibiose, and lactose transport systems from regulation by the phosphoenolpyruvate:sugar phosphotransferase system. J Bacteriol. 1978 Mar;133(3):1358–1367. [PMC free article] [PubMed]
  • Saier MH, Jr, Yamada M, Erni B, Suda K, Lengeler J, Ebner R, Argos P, Rak B, Schnetz K, Lee CA, et al. Sugar permeases of the bacterial phosphoenolpyruvate-dependent phosphotransferase system: sequence comparisons. FASEB J. 1988 Mar 1;2(3):199–208. [PubMed]
  • Sarno MV, Tenn LG, Desai A, Chin AM, Grenier FC, Saier MH., Jr Genetic evidence for glucitol-specific enzyme III, an essential phosphocarrier protein of the Salmonella typhimurium glucitol phosphotransferase system. J Bacteriol. 1984 Mar;157(3):953–955. [PMC free article] [PubMed]
  • Sato Y, Poy F, Jacobson GR, Kuramitsu HK. Characterization and sequence analysis of the scrA gene encoding enzyme IIScr of the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system. J Bacteriol. 1989 Jan;171(1):263–271. [PMC free article] [PubMed]
  • Scarborough GA. Binding energy, conformational change, and the mechanism of transmembrane solute movements. Microbiol Rev. 1985 Sep;49(3):214–231. [PMC free article] [PubMed]
  • Schaefler S. Inducible system for the utilization of beta-glucosides in Escherichia coli. I. Active transport and utilization of beta-glucosides. J Bacteriol. 1967 Jan;93(1):254–263. [PMC free article] [PubMed]
  • Schmid K, Ebner R, Altenbuchner J, Schmitt R, Lengeler JW. Plasmid-mediated sucrose metabolism in Escherichia coli K12: mapping of the scr genes of pUR400. Mol Microbiol. 1988 Jan;2(1):1–8. [PubMed]
  • Schmid K, Ebner R, Jahreis K, Lengeler JW, Titgemeyer F. A sugar-specific porin, ScrY, is involved in sucrose uptake in enteric bacteria. Mol Microbiol. 1991 Apr;5(4):941–950. [PubMed]
  • Schmid K, Schupfner M, Schmitt R. Plasmid-mediated uptake and metabolism of sucrose by Escherichia coli K-12. J Bacteriol. 1982 Jul;151(1):68–76. [PMC free article] [PubMed]
  • Schnetz K, Rak B. Regulation of the bgl operon of Escherichia coli by transcriptional antitermination. EMBO J. 1988 Oct;7(10):3271–3277. [PMC free article] [PubMed]
  • Schnetz K, Rak B. Beta-glucoside permease represses the bgl operon of Escherichia coli by phosphorylation of the antiterminator protein and also interacts with glucose-specific enzyme III, the key element in catabolite control. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5074–5078. [PMC free article] [PubMed]
  • Schnetz K, Sutrina SL, Saier MH, Jr, Rak B. Identification of catalytic residues in the beta-glucoside permease of Escherichia coli by site-specific mutagenesis and demonstration of interdomain cross-reactivity between the beta-glucoside and glucose systems. J Biol Chem. 1990 Aug 15;265(23):13464–13471. [PubMed]
  • Schnetz K, Toloczyki C, Rak B. Beta-glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. J Bacteriol. 1987 Jun;169(6):2579–2590. [PMC free article] [PubMed]
  • Schnierow BJ, Yamada M, Saier MH., Jr Partial nucleotide sequence of the pts operon in Salmonella typhimurium: comparative analyses in five bacterial genera. Mol Microbiol. 1989 Jan;3(1):113–118. [PubMed]
  • Scholte BJ, Postma PW. Competition between two pathways for sugar uptake by the phosphoenolpyruvate-dependent sugar phosphotransferase system in Salmonella typhimurium. Eur J Biochem. 1981;114(1):51–58. [PubMed]
  • Scholte BJ, Schuitema AR, Postma PW. Isolation of IIIGlc of the phosphoenolpyruvate-dependent glucose phosphotransferase system of Salmonella typhimurium. J Bacteriol. 1981 Oct;148(1):257–264. [PMC free article] [PubMed]
  • Scholte BJ, Schuitema AR, Postma PW. Characterization of factor IIIGLc in catabolite repression-resistant (crr) mutants of Salmonella typhimurium. J Bacteriol. 1982 Feb;149(2):576–586. [PMC free article] [PubMed]
  • Schrecker Otto, Hengstenberg Wolfgang. Purification of the lactose specific factor III of the staphylococcal PEP dependent phosphotransferase system. FEBS Lett. 1971 Mar 16;13(4):209–212. [PubMed]
  • Sharma S, Georges F, Delbaere LT, Lee JS, Klevit RE, Waygood EB. Epitope mapping by mutagenesis distinguishes between the two tertiary structures of the histidine-containing protein HPr. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4877–4881. [PMC free article] [PubMed]
  • Shimotsu H, Henner DJ. Modulation of Bacillus subtilis levansucrase gene expression by sucrose and regulation of the steady-state mRNA level by sacU and sacQ genes. J Bacteriol. 1986 Oct;168(1):380–388. [PMC free article] [PubMed]
  • Shioi JI, Galloway RJ, Niwano M, Chinnock RE, Taylor BL. Requirement of ATP in bacterial chemotaxis. J Biol Chem. 1982 Jul 25;257(14):7969–7975. [PubMed]
  • Shuman HA. The use of gene fusions of study bacterial transport proteins. J Membr Biol. 1981;61(1):1–11. [PubMed]
  • Simoni RD, Hays JB, Nakazawa T, Roseman S. Sugar transport. VI. Phosphoryl transfer in the lactose phosphotransferase system of Staphylococcus aureus. J Biol Chem. 1973 Feb 10;248(3):957–965. [PubMed]
  • Simoni RD, Nakazawa T, Hays JB, Roseman S. Sugar transport. IV. Isolation and characterization of the lactose phosphotransferase system in Staphylococcus aureus. J Biol Chem. 1973 Feb 10;248(3):932–940. [PubMed]
  • Simoni RD, Roseman S. Sugar transport. VII. Lactose transport in Staphylococcus aureus. J Biol Chem. 1973 Feb 10;248(3):966–974. [PubMed]
  • Singh SP, Bishop CJ, Vink R, Rogers PJ. Regulation of the glucose phosphotransferase system in Brochothrix thermosphacta by membrane energization. J Bacteriol. 1985 Oct;164(1):367–378. [PMC free article] [PubMed]
  • Sizemore C, Wieland B, Götz F, Hillen W. Regulation of Staphylococcus xylosus xylose utilization genes at the molecular level. J Bacteriol. 1992 May;174(9):3042–3048. [PMC free article] [PubMed]
  • Solomon E, Lin EC. Mutations affecting the dissimilation of mannitol by Escherichia coli K-12. J Bacteriol. 1972 Aug;111(2):566–574. [PMC free article] [PubMed]
  • Solomon E, Miyal K, Lin EC. Membrane translocation of mannitol in Escherichia coli without phosphorylation. J Bacteriol. 1973 May;114(2):723–728. [PMC free article] [PubMed]
  • Sprenger GA, Lengeler JW. L-Sorbose metabolism in Klebsiella pneumoniae and Sor+ derivatives of Escherichia coli K-12 and chemotaxis toward sorbose. J Bacteriol. 1984 Jan;157(1):39–45. [PMC free article] [PubMed]
  • Sprenger GA, Lengeler JW. Mapping of the sor genes for L-sorbose degradation in the chromosome of Klebsiella pneumoniae. Mol Gen Genet. 1987 Sep;209(2):352–359. [PubMed]
  • Sprenger GA, Lengeler JW. Analysis of sucrose catabolism in Klebsiella pneumoniae and in Scr+ derivatives of Escherichia coli K12. J Gen Microbiol. 1988 Jun;134(6):1635–1644. [PubMed]
  • Stein JM, Kornberg HL, Martin BR. Effects of GTP,GDP[beta S] and glucose on adenylate cyclase activity of E. coli B. FEBS Lett. 1985 Mar 25;182(2):429–434. [PubMed]
  • Steinmetz M, Le Coq D, Aymerich S. Induction of saccharolytic enzymes by sucrose in Bacillus subtilis: evidence for two partially interchangeable regulatory pathways. J Bacteriol. 1989 Mar;171(3):1519–1523. [PMC free article] [PubMed]
  • Steinmetz M, Le Coq D, Aymerich S, Gonzy-Tréboul G, Gay P. The DNA sequence of the gene for the secreted Bacillus subtilis enzyme levansucrase and its genetic control sites. Mol Gen Genet. 1985;200(2):220–228. [PubMed]
  • Stephan MM, Jacobson GR. Membrane disposition of the Escherichia coli mannitol permease: identification of membrane-bound and cytoplasmic domains. Biochemistry. 1986 Dec 16;25(25):8230–8234. [PubMed]
  • Stephan MM, Jacobson GR. Subunit interactions of the Escherichia coli mannitol permease: correlation with enzymic activities. Biochemistry. 1986 Jul 15;25(14):4046–4051. [PubMed]
  • Stephan MM, Khandekar SS, Jacobson GR. Hydrophilic C-terminal domain of the Escherichia coli mannitol permease: phosphorylation, functional independence, and evidence for intersubunit phosphotransfer. Biochemistry. 1989 Sep 19;28(19):7941–7946. [PubMed]
  • Stock JB, Ninfa AJ, Stock AM. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev. 1989 Dec;53(4):450–490. [PMC free article] [PubMed]
  • Stock JB, Waygood EB, Meadow ND, Postma PW, Roseman S. Sugar transport by the bacterial phosphotransferase system. The glucose receptors of the Salmonella typhimurium phosphotransferase system. J Biol Chem. 1982 Dec 10;257(23):14543–14552. [PubMed]
  • Stone MJ, Fairbrother WJ, Palmer AG, 3rd, Reizer J, Saier MH, Jr, Wright PE. Backbone dynamics of the Bacillus subtilis glucose permease IIA domain determined from 15N NMR relaxation measurements. Biochemistry. 1992 May 12;31(18):4394–4406. [PubMed]
  • Stüber K, Deutscher J, Sobek HM, Hengstenberg W, Beyreuther K. Amino acid sequence of the amphiphilic phosphocarrier protein factor IIILac of the lactose-specific phosphotransferase system of Staphylococcus. Biochemistry. 1985 Feb 26;24(5):1164–1168. [PubMed]
  • Sugiyama JE, Mahmoodian S, Jacobson GR. Membrane topology analysis of Escherichia coli mannitol permease by using a nested-deletion method to create mtlA-phoA fusions. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9603–9607. [PMC free article] [PubMed]
  • Sutrina SL, Chin AM, Esch F, Saier MH., Jr Purification and characterization of the fructose-inducible HPr-like protein, FPr, and the fructose-specific enzyme III of the phosphoenolpyruvate: sugar phosphotransferase system of Salmonella typhimurium. J Biol Chem. 1988 Apr 15;263(11):5061–5069. [PubMed]
  • Sutrina SL, Reddy P, Saier MH, Jr, Reizer J. The glucose permease of Bacillus subtilis is a single polypeptide chain that functions to energize the sucrose permease. J Biol Chem. 1990 Oct 25;265(30):18581–18589. [PubMed]
  • Sutrina SL, Reizer J, Saier MH., Jr Inducer expulsion in Streptococcus pyogenes: properties and mechanism of the efflux reaction. J Bacteriol. 1988 Apr;170(4):1874–1877. [PMC free article] [PubMed]
  • Sutrina SL, Waygood EB, Grenier FC, Saier MH., Jr HPr/HPr-P phosphoryl exchange reaction catalyzed by the mannitol specific enzyme II of the bacterial phosphotransferase system. J Biol Chem. 1987 Feb 25;262(6):2636–2641. [PubMed]
  • Takahashi M, Blazy B, Baudras A, Hillen W. Ligand-modulated binding of a gene regulatory protein to DNA. Quantitative analysis of cyclic-AMP induced binding of CRP from Escherichia coli to non-specific and specific DNA targets. J Mol Biol. 1989 Jun 20;207(4):783–796. [PubMed]
  • Tangney M, Buchanan CJ, Priest FG, Mitchell WJ. Maltose uptake and its regulation in Bacillus subtilis. FEMS Microbiol Lett. 1992 Oct 1;76(1-2):191–196. [PubMed]
  • Thibault L, Vadeboncoeur C. Phosphoenolpyruvate-sugar phosphotransferase transport system of Streptococcus mutans: purification of HPr and enzyme I and determination of their intracellular concentrations by rocket immunoelectrophoresis. Infect Immun. 1985 Dec;50(3):817–825. [PMC free article] [PubMed]
  • Thompson J, Chassy BM. Intracellular hexose-6-phosphate:phosphohydrolase from Streptococcus lactis: purification, properties, and function. J Bacteriol. 1983 Oct;156(1):70–80. [PMC free article] [PubMed]
  • Thompson J, Nguyen NY, Sackett DL, Donkersloot JA. Transposon-encoded sucrose metabolism in Lactococcus lactis. Purification of sucrose-6-phosphate hydrolase and genetic linkage to N5-(L-1-carboxyethyl)-L-ornithine synthase in strain K1. J Biol Chem. 1991 Aug 5;266(22):14573–14579. [PubMed]
  • Thompson J, Sackett DL, Donkersloot JA. Purification and properties of fructokinase I from Lactococcus lactis. Localization of scrK on the sucrose-nisin transposon Tn5306. J Biol Chem. 1991 Nov 25;266(33):22626–22633. [PubMed]
  • Thompson J, Torchia DA. Use of 31P nuclear magnetic resonance spectroscopy and 14C fluorography in studies of glycolysis and regulation of pyruvate kinase in Streptococcus lactis. J Bacteriol. 1984 Jun;158(3):791–800. [PMC free article] [PubMed]
  • Thompson J, Turner KW, Thomas TD. Catabolite inhibition and sequential metabolism of sugars by Streptococcus lactis. J Bacteriol. 1978 Mar;133(3):1163–1174. [PMC free article] [PubMed]
  • Titgemeyer F, Eisermann R, Hengstenberg W, Lengeler JW. The nucleotide sequence of ptsH gene from Klebsiella pneumoniae. Nucleic Acids Res. 1990 Apr 11;18(7):1898–1898. [PMC free article] [PubMed]
  • Tribhuwan RC, Johnson MS, Taylor BL. Evidence against direct involvement of cyclic GMP or cyclic AMP in bacterial chemotactic signaling. J Bacteriol. 1986 Nov;168(2):624–630. [PMC free article] [PubMed]
  • Ugurbil K, Rottenberg H, Glynn P, Shulman RG. 31P nuclear magnetic resonance studies of bioenergetics and glycolysis in anaerobic Escherichia coli cells. Proc Natl Acad Sci U S A. 1978 May;75(5):2244–2248. [PMC free article] [PubMed]
  • Vadeboncoeur C, Brochu D, Reizer J. Quantitative determination of the intracellular concentration of the various forms of HPr, a phosphocarrier protein of the phosphoenolpyruvate: sugar phosphotransferase system in growing cells of oral streptococci. Anal Biochem. 1991 Jul;196(1):24–30. [PubMed]
  • Vadeboncoeur C, Gauthier L. The phosphoenolpyruvate: sugar phosphotransferase system of Streptococcus salivarius. Identification of a IIIman protein. Can J Microbiol. 1987 Feb;33(2):118–122. [PubMed]
  • Vadeboncoeur C, Proulx M. Lactose transport in Streptococcus mutans: isolation and characterization of factor IIIlac, a specific protein component of the phosphoenolpyruvate-lactose phosphotransferase system. Infect Immun. 1984 Oct;46(1):213–219. [PMC free article] [PubMed]
  • Vadeboncoeur C, Proulx M, Trahan L. Purification of proteins similar to HPr and enzyme I from the oral bacterium Streptococcus salivarius. Biochemical and immunochemical properties. Can J Microbiol. 1983 Dec;29(12):1694–1705. [PubMed]
  • van Dijk AA, de Lange LC, Bachovchin WW, Robillard GT. Effect of phosphorylation on hydrogen-bonding interactions of the active site histidine of the phosphocarrier protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system determined by 15N NMR spectroscopy. Biochemistry. 1990 Sep 4;29(35):8164–8171. [PubMed]
  • van Dijk AA, Eisermann R, Hengstenberg W, Robillard GT. Exchange of phosphoryl groups between HPr molecules of the phosphoenolpyruvate-dependent phosphotransferase system is an autocatalytic process. Biochemistry. 1991 Mar 19;30(11):2876–2882. [PubMed]
  • Van Dijk AA, Scheek RM, Dijkstra K, Wolters GK, Robillard GT. Characterization of the protonation and hydrogen bonding state of the histidine residues in IIAmtl, a domain of the phosphoenolpyruvate-dependent mannitol-specific transport protein. Biochemistry. 1992 Sep 22;31(37):9063–9072. [PubMed]
  • van Nuland NA, van Dijk AA, Dijkstra K, van Hoesel FH, Scheek RM, Robillard GT. Three-dimensional 15N-1H-1H and 15N-13C-1H nuclear-magnetic resonance studies of HPr a central component of the phosphoenolpyruvate-dependent phosphotransferase system from Escherichia coli. Assignment of backbone resonances. Eur J Biochem. 1992 Feb 1;203(3):483–491. [PubMed]
  • van Rooijen RJ, de Vos WM. Molecular cloning, transcriptional analysis, and nucleotide sequence of lacR, a gene encoding the repressor of the lactose phosphotransferase system of Lactococcus lactis. J Biol Chem. 1990 Oct 25;265(30):18499–18503. [PubMed]
  • van Rooijen RJ, van Schalkwijk S, de Vos WM. Molecular cloning, characterization, and nucleotide sequence of the tagatose 6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis. J Biol Chem. 1991 Apr 15;266(11):7176–7181. [PubMed]
  • van Weeghel RP, Keck W, Robillard GT. Regulated high-level expression of the mannitol permease of the phosphoenolpyruvate-dependent sugar phosphotransferase system in Escherichia coli. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2613–2617. [PMC free article] [PubMed]
  • van Weeghel RP, Meyer G, Pas HH, Keck W, Robillard GT. Cytoplasmic phosphorylating domain of the mannitol-specific transport protein of the phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli: overexpression, purification, and functional complementation with the mannitol binding domain. Biochemistry. 1991 Oct 1;30(39):9478–9485. [PubMed]
  • van Weeghel RP, Meyer GH, Keck W, Robillard GT. Phosphoenolpyruvate-dependent mannitol phosphotransferase system of Escherichia coli: overexpression, purification, and characterization of the enzymatically active C-terminal domain of enzyme IImtl equivalent to enzyme IIImtl. Biochemistry. 1991 Feb 19;30(7):1774–1779. [PubMed]
  • van Weeghel RP, van der Hoek YY, Pas HH, Elferink M, Keck W, Robillard GT. Details of mannitol transport in Escherichia coli elucidated by site-specific mutagenesis and complementation of phosphorylation site mutants of the phosphoenolpyruvate-dependent mannitol-specific phosphotransferase system. Biochemistry. 1991 Feb 19;30(7):1768–1773. [PubMed]
  • Vogler AP, Broekhuizen CP, Schuitema A, Lengeler JW, Postma PW. Suppression of IIIGlc-defects by enzymes IINag and IIBgl of the PEP:carbohydrate phosphotransferase system. Mol Microbiol. 1988 Nov;2(6):719–726. [PubMed]
  • Vogler AP, Lengeler JW. Indirect role of adenylate cyclase and cyclic AMP in chemotaxis to phosphotransferase system carbohydrates in Escherichia coli K-12. J Bacteriol. 1987 Feb;169(2):593–599. [PMC free article] [PubMed]
  • Vogler AP, Lengeler JW. Complementation of a truncated membrane-bound Enzyme IINag from Klebsiella pneumoniae with a soluble Enzyme III in Escherichia coli K12. Mol Gen Genet. 1988 Jul;213(1):175–178. [PubMed]
  • Vogler AP, Lengeler JW. Analysis of the nag regulon from Escherichia coli K12 and Klebsiella pneumoniae and of its regulation. Mol Gen Genet. 1989 Oct;219(1-2):97–105. [PubMed]
  • Vogler AP, Lengeler JW. Comparison of the sequences of the nagE operons from Klebsiella pneumoniae and Escherichia coli K12: enhanced variability of the enzyme IIN-acetylglucosamine in regions connecting functional domains. Mol Gen Genet. 1991 Nov;230(1-2):270–276. [PubMed]
  • Vogler AP, Trentmann S, Lengeler JW. Alternative route for biosynthesis of amino sugars in Escherichia coli K-12 mutants by means of a catabolic isomerase. J Bacteriol. 1989 Dec;171(12):6586–6592. [PMC free article] [PubMed]
  • Waygood EB. Resolution of the phosphoenolpyruvate: fructose phosphotransferase system of Escherichia coli into two components: enzyme IIfructose and fructose-induced HPr-like protein (FPr). Can J Biochem. 1980 Oct;58(10):1144–1146. [PubMed]
  • Waygood EB. Enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system has two sites of phosphorylation per dimer. Biochemistry. 1986 Jul 15;25(14):4085–4090. [PubMed]
  • Waygood EB, Mattoo RL, Erickson E, Vadeboncoeur C. Phosphoproteins and the phosphoenolpyruvate:sugar phosphotransferase system of Streptococcus salivarius. Detection of two different ATP-dependent phosphorylations of the phosphocarrier protein HPr. Can J Microbiol. 1986 Apr;32(4):310–318. [PubMed]
  • Waygood EB, Mattoo RL, Peri KG. Phosphoproteins and the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium and Escherichia coli: evidence for IIImannose, IIIfructose, IIIglucitol, and the phosphorylation of enzyme IImannitol and enzyme IIN-acetylglucosamine. J Cell Biochem. 1984;25(3):139–159. [PubMed]
  • Waygood EB, Meadow ND, Roseman S. Modified assay procedures for the phosphotransferase system in enteric bacteria. Anal Biochem. 1979 May;95(1):293–304. [PubMed]
  • Waygood EB, Steeves T. Enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system of Escherichia coli. Purification to homogeneity and some properties. Can J Biochem. 1980 Jan;58(1):40–48. [PubMed]
  • Wehmeier U, Sprenger GA, Lengeler JW. The use of lambda plac-Mu hybrid phages in Klebsiella pneumoniae and the isolation of stable Hfr strains. Mol Gen Genet. 1989 Feb;215(3):529–536. [PubMed]
  • Weickert MJ, Adhya S. A family of bacterial regulators homologous to Gal and Lac repressors. J Biol Chem. 1992 Aug 5;267(22):15869–15874. [PubMed]
  • Weickert MJ, Chambliss GH. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6238–6242. [PMC free article] [PubMed]
  • Weigel N, Kukuruzinska MA, Nakazawa A, Waygood EB, Roseman S. Sugar transport by the bacterial phosphotransferase system. Phosphoryl transfer reactions catalyzed by enzyme I of Salmonella typhimurium. J Biol Chem. 1982 Dec 10;257(23):14477–14491. [PubMed]
  • Weigel N, Powers DA, Roseman S. Sugar transport by the bacterial phosphotransferase system. Primary structure and active site of a general phosphocarrier protein (HPr) from Salmonella typhimurium. J Biol Chem. 1982 Dec 10;257(23):14499–14509. [PubMed]
  • Weigel N, Waygood EB, Kukuruzinska MA, Nakazawa A, Roseman S. Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of enzyme I from Salmonella typhimurium. J Biol Chem. 1982 Dec 10;257(23):14461–14469. [PubMed]
  • Weng QP, Elder J, Jacobson GR. Site-specific mutagenesis of residues in the Escherichia coli mannitol permease that have been suggested to be important for its phosphorylation and chemoreception functions. J Biol Chem. 1992 Sep 25;267(27):19529–19535. [PubMed]
  • White DW, Jacobson GR. Molecular cloning of the C-terminal domain of Escherichia coli D-mannitol permease: expression, phosphorylation, and complementation with C-terminal permease deletion proteins. J Bacteriol. 1990 Mar;172(3):1509–1515. [PMC free article] [PubMed]
  • White RJ. The role of the phosphoenolpyruvate phosphotransferase system in the transport of N-acetyl-D-glucosamine by Escherichia coli. Biochem J. 1970 Jun;118(1):89–92. [PMC free article] [PubMed]
  • Williams N, Fox DK, Shea C, Roseman S. Pel, the protein that permits lambda DNA penetration of Escherichia coli, is encoded by a gene in ptsM and is required for mannose utilization by the phosphotransferase system. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8934–8938. [PMC free article] [PubMed]
  • Wilson TH, Yunker PL, Hansen CL. Lactose transport mutants of Escherichia coli resistant to inhibition by the phosphotransferase system. Biochim Biophys Acta. 1990 Nov 2;1029(1):113–116. [PubMed]
  • Winkler HH. Efflux and the steady state in alpha-methylglucoside transport in Escherichia coli. J Bacteriol. 1971 May;106(2):362–368. [PMC free article] [PubMed]
  • Winkler HH, Wilson TH. Inhibition of beta-galactoside transport by substrates of the glucose transport system in Escherichia coli. Biochim Biophys Acta. 1967;135(5):1030–1051. [PubMed]
  • Wittekind M, Reizer J, Deutscher J, Saier MH, Klevit RE. Common structural changes accompany the functional inactivation of HPr by seryl phosphorylation or by serine to aspartate substitution. Biochemistry. 1989 Dec 26;28(26):9908–9912. [PubMed]
  • Wittekind M, Reizer J, Klevit RE. Sequence-specific 1H NMR resonance assignments of Bacillus subtilis HPr: use of spectra obtained from mutants to resolve spectral overlap. Biochemistry. 1990 Aug 7;29(31):7191–7200. [PubMed]
  • Wöhrl BM, Lengeler JW. Cloning and physical mapping of the sor genes for L-sorbose transport and metabolism from Klebsiella pneumoniae. Mol Microbiol. 1990 Sep;4(9):1557–1565. [PubMed]
  • Wöhrl BM, Wehmeier UF, Lengeler JW. Positive and negative regulation of expression of the L-sorbose (sor) operon by SorC in Klebsiella pneumoniae. Mol Gen Genet. 1990 Nov;224(2):193–200. [PubMed]
  • Wolfe AJ, Conley MP, Berg HC. Acetyladenylate plays a role in controlling the direction of flagellar rotation. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6711–6715. [PMC free article] [PubMed]
  • Woodward MJ, Charles HP. Genes for l-sorbose utilization in Escherichia coli. J Gen Microbiol. 1982 Sep;128(9):1969–1980. [PubMed]
  • Wootton JC, Drummond MH. The Q-linker: a class of interdomain sequences found in bacterial multidomain regulatory proteins. Protein Eng. 1989 May;2(7):535–543. [PubMed]
  • Worthylake D, Meadow ND, Roseman S, Liao DI, Herzberg O, Remington SJ. Three-dimensional structure of the Escherichia coli phosphocarrier protein IIIglc. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10382–10386. [PMC free article] [PubMed]
  • Wu LF, Saier MH., Jr Nucleotide sequence of the fruA gene, encoding the fructose permease of the Rhodobacter capsulatus phosphotransferase system, and analyses of the deduced protein sequence. J Bacteriol. 1990 Dec;172(12):7167–7178. [PMC free article] [PubMed]
  • Wu LF, Tomich JM, Saier MH., Jr Structure and evolution of a multidomain multiphosphoryl transfer protein. Nucleotide sequence of the fruB(HI) gene in Rhodobacter capsulatus and comparisons with homologous genes from other organisms. J Mol Biol. 1990 Jun 20;213(4):687–703. [PubMed]
  • Yamada M, Feucht BU, Saier MH., Jr Regulation of gluconeogenesis by the glucitol enzyme III of the phosphotransferase system in Escherichia coli. J Bacteriol. 1987 Dec;169(12):5416–5422. [PMC free article] [PubMed]
  • Yamada M, Saier MH., Jr Glucitol-specific enzymes of the phosphotransferase system in Escherichia coli. Nucleotide sequence of the gut operon. J Biol Chem. 1987 Apr 25;262(12):5455–5463. [PubMed]
  • Yamada M, Saier MH., Jr Physical and genetic characterization of the glucitol operon in Escherichia coli. J Bacteriol. 1987 Jul;169(7):2990–2994. [PMC free article] [PubMed]
  • Yamada M, Saier MH., Jr Positive and negative regulators for glucitol (gut) operon expression in Escherichia coli. J Mol Biol. 1988 Oct 5;203(3):569–583. [PubMed]
  • Yamada Y, Chang YY, Daniels GA, Wu LF, Tomich JM, Yamada M, Saier MH., Jr Insertion of the mannitol permease into the membrane of Escherichia coli. Possible involvement of an N-terminal amphiphilic sequence. J Biol Chem. 1991 Sep 25;266(27):17863–17871. [PubMed]
  • Yang JK, Bloom RW, Epstein W. Catabolite and transient repression in Escherichia coli do not require enzyme I of the phosphotransferase system. J Bacteriol. 1979 Apr;138(1):275–279. [PMC free article] [PubMed]
  • Zagorec M, Postma PW. Cloning and nucleotide sequence of the ptsG gene of Bacillus subtilis. Mol Gen Genet. 1992 Aug;234(2):325–328. [PubMed]
  • Zeng GQ, De Reuse H, Danchin A. Mutational analysis of the enzyme IIIGlc of the phosphoenolpyruvate phosphotransferase system in Escherichia coli. Res Microbiol. 1992 Mar-Apr;143(3):251–261. [PubMed]
  • Zukowski MM, Miller L, Cosgwell P, Chen K, Aymerich S, Steinmetz M. Nucleotide sequence of the sacS locus of Bacillus subtilis reveals the presence of two regulatory genes. Gene. 1990 May 31;90(1):153–155. [PubMed]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • Compound
    Compound
    PubChem Compound links
  • Conserved Domains
    Conserved Domains
    Link to related CDD entry
  • Gene
    Gene
    Gene links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • MedGen
    MedGen
    Related information in MedGen
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...