• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of microrevMicrobiol Mol Biol Rev ArchivePermissionsJournals.ASM.orgMMBR ArticleJournal InfoAuthorsReviewers
Microbiol Rev. Jun 1993; 57(2): 434–450.
PMCID: PMC372918

Biology of DNA restriction.

Abstract

Our understanding of the evolution of DNA restriction and modification systems, the control of the expression of the structural genes for the enzymes, and the importance of DNA restriction in the cellular economy has advanced by leaps and bounds in recent years. This review documents these advances for the three major classes of classical restriction and modification systems, describes the discovery of a new class of restriction systems that specifically cut DNA carrying the modification signature of foreign cells, and deals with the mechanisms developed by phages to avoid the restriction systems of their hosts.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (3.8M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Amitsur M, Morad I, Chapman-Shimshoni D, Kaufmann G. HSD restriction-modification proteins partake in latent anticodon nuclease. EMBO J. 1992 Aug;11(8):3129–3134. [PMC free article] [PubMed]
  • ARBER W. HOST SPECIFICITY OF DNA PRODUCED BY ESCHERICHIA COLI V . THE ROLE OF METHIONINE IN THE PRODUCTION OF HOST SPECIFICITY. J Mol Biol. 1965 Feb;11:247–256. [PubMed]
  • ARBER W, DUSSOIX D. Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage lambda. J Mol Biol. 1962 Jul;5:18–36. [PubMed]
  • ARBER W, HATTMAN S, DUSSOIX D. ON THE HOST-CONTROLLED MODIFICATION OF BACTERIOPHAGE LAMBDA. Virology. 1963 Sep;21:30–35. [PubMed]
  • Arber W, Linn S. DNA modification and restriction. Annu Rev Biochem. 1969;38:467–500. [PubMed]
  • Arber W, Wauters-Willems D. Host specificity of DNA produced by Escherichia coli. XII. The two restriction and modification systems of strain 15T-. Mol Gen Genet. 1970;108(3):203–217. [PubMed]
  • Bächi B, Reiser J, Pirrotta V. Methylation and cleavage sequences of the EcoP1 restriction-modification enzyme. J Mol Biol. 1979 Feb 25;128(2):143–163. [PubMed]
  • Balganesh TS, Reiners L, Lauster R, Noyer-Weidner M, Wilke K, Trautner TA. Construction and use of chimeric SPR/phi 3T DNA methyltransferases in the definition of sequence recognizing enzyme regions. EMBO J. 1987 Nov;6(11):3543–3549. [PMC free article] [PubMed]
  • Bandyopadhyay PK, Studier FW, Hamilton DL, Yuan R. Inhibition of the type I restriction-modification enzymes EcoB and EcoK by the gene 0.3 protein of bacteriophage T7. J Mol Biol. 1985 Apr 20;182(4):567–578. [PubMed]
  • Barany F, Danzitz M, Zebala J, Mayer A. Cloning and sequencing of genes encoding the TthHB8I restriction and modification enzymes: comparison with the isoschizomeric TaqI enzymes. Gene. 1992 Mar 1;112(1):3–12. [PubMed]
  • Barras F, Marinus MG. The great GATC: DNA methylation in E. coli. Trends Genet. 1989 May;5(5):139–143. [PubMed]
  • Behrens B, Noyer-Weidner M, Pawlek B, Lauster R, Balganesh TS, Trautner TA. Organization of multispecific DNA methyltransferases encoded by temperate Bacillus subtilis phages. EMBO J. 1987 Apr;6(4):1137–1142. [PMC free article] [PubMed]
  • Belogurov AA, Yussifov TN, Kotova VU, Zavilgelsky GB. The novel gene(s) ARD of plasmid pKM101: alleviation of EcoK restriction. Mol Gen Genet. 1985;198(3):509–513. [PubMed]
  • Belogurov AA, Delver EP, Rodzevich OV. IncN plasmid pKM101 and IncI1 plasmid ColIb-P9 encode homologous antirestriction proteins in their leading regions. J Bacteriol. 1992 Aug;174(15):5079–5085. [PMC free article] [PubMed]
  • BERTANI G, WEIGLE JJ. Host controlled variation in bacterial viruses. J Bacteriol. 1953 Feb;65(2):113–121. [PMC free article] [PubMed]
  • Bestor T, Laudano A, Mattaliano R, Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol. 1988 Oct 20;203(4):971–983. [PubMed]
  • Bhagwat AS, Johnson B, Weule K, Roberts RJ. Primary sequence of the EcoRII endonuclease and properties of its fusions with beta-galactosidase. J Biol Chem. 1990 Jan 15;265(2):767–773. [PubMed]
  • Blumenthal RM. The Pvu II restriction-modification system: cloning, characterization and use in revealing an E. coli barrier to certain methylases or methylated DNAs. Gene Amplif Anal. 1987;5:227–245. [PubMed]
  • Blumenthal RM, Gregory SA, Cooperider JS. Cloning of a restriction-modification system from Proteus vulgaris and its use in analyzing a methylase-sensitive phenotype in Escherichia coli. J Bacteriol. 1985 Nov;164(2):501–509. [PMC free article] [PubMed]
  • Bogdarina IG, Reiter M, Krüger DH, Bur'ianov Ia I, Baev AA. Metilirovanie DNK fagov T3 i T7 DNK-adenin-metilazami razlichnykh tipov i inhgibirovanie metilazy EcoK ocR+ belkom. Dokl Akad Nauk SSSR. 1983 Nov-Dec;273(1):234–237. [PubMed]
  • Boyer HW. DNA restriction and modification mechanisms in bacteria. Annu Rev Microbiol. 1971;25:153–176. [PubMed]
  • Boyer HW, Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. [PubMed]
  • Brody H, Greener A, Hill CW. Excision and reintegration of the Escherichia coli K-12 chromosomal element e14. J Bacteriol. 1985 Mar;161(3):1112–1117. [PMC free article] [PubMed]
  • Brooks JE, Nathan PD, Landry D, Sznyter LA, Waite-Rees P, Ives CL, Moran LS, Slatko BE, Benner JS. Characterization of the cloned BamHI restriction modification system: its nucleotide sequence, properties of the methylase, and expression in heterologous hosts. Nucleic Acids Res. 1991 Feb 25;19(4):841–850. [PMC free article] [PubMed]
  • Brown TC, Jiricny J. A specific mismatch repair event protects mammalian cells from loss of 5-methylcytosine. Cell. 1987 Sep 11;50(6):945–950. [PubMed]
  • Bullas LR, Colson C, Neufeld B. Deoxyribonucleic acid restriction and modification systems in Salmonella: chromosomally located systems of different serotypes. J Bacteriol. 1980 Jan;141(1):275–292. [PMC free article] [PubMed]
  • Bullas LR, Colson C, Van Pel A. DNA restriction and modification systems in Salmonella. SQ, a new system derived by recombination between the SB system of Salmonella typhimurium and the SP system of Salmonella potsdam. J Gen Microbiol. 1976 Jul;95(1):166–172. [PubMed]
  • Butkus V, Klimasauskas S, Kersulyte D, Vaitkevicius D, Lebionka A, Janulaitis A. Investigation of restriction-modification enzymes from M. varians RFL19 with a new type of specificity toward modification of substrate. Nucleic Acids Res. 1985 Aug 26;13(16):5727–5746. [PMC free article] [PubMed]
  • Butkus V, Klimasauskas S, Petrauskiene L, Maneliene Z, Lebionka A, Janulaitis A. Interaction of AluI, Cfr6I and PvuII restriction-modification enzymes with substrates containing either N4-methylcytosine or 5-methylcytosine. Biochim Biophys Acta. 1987 Aug 25;909(3):201–207. [PubMed]
  • Cerritelli S, Springhorn SS, Lacks SA. DpnA, a methylase for single-strand DNA in the Dpn II restriction system, and its biological function. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9223–9227. [PMC free article] [PubMed]
  • Conrad M, Topal MD. DNA and spermidine provide a switch mechanism to regulate the activity of restriction enzyme Nae I. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9707–9711. [PMC free article] [PubMed]
  • Conrad M, Topal MD. Modified DNA fragments activate NaeI cleavage of refractory DNA sites. Nucleic Acids Res. 1992 Oct 11;20(19):5127–5130. [PMC free article] [PubMed]
  • Coulondre C, Miller JH, Farabaugh PJ, Gilbert W. Molecular basis of base substitution hotspots in Escherichia coli. Nature. 1978 Aug 24;274(5673):775–780. [PubMed]
  • Cowan GM, Gann AA, Murray NE. Conservation of complex DNA recognition domains between families of restriction enzymes. Cell. 1989 Jan 13;56(1):103–109. [PubMed]
  • Daniel AS, Fuller-Pace FV, Legge DM, Murray NE. Distribution and diversity of hsd genes in Escherichia coli and other enteric bacteria. J Bacteriol. 1988 Apr;170(4):1775–1782. [PMC free article] [PubMed]
  • De Backer O, Colson C. Identification of the recognition sequence for the M.StyLTI methyltransferase of Salmonella typhimurium LT7: an asymmetric site typical of type-III enzymes. Gene. 1991 Jan 2;97(1):103–107. [PubMed]
  • De Backer O, Colson C. Transfer of the genes for the StyLTI restriction-modification system of Salmonella typhimurium to strains lacking modification ability results in death of the recipient cells and degradation of their DNA. J Bacteriol. 1991 Feb;173(3):1328–1330. [PMC free article] [PubMed]
  • De Backer O, Colson C. Two-step cloning and expression in Escherichia coli of the DNA restriction-modification system StyLTI of Salmonella typhimurium. J Bacteriol. 1991 Feb;173(3):1321–1327. [PMC free article] [PubMed]
  • Debrouwere L, Van Montagu M, Schell J. The ral gene of phage lambda. III. Interference with E. coli ATP dependent functions. Mol Gen Genet. 1980;179(1):81–88. [PubMed]
  • Delver EP, Kotova VU, Zavilgelsky GB, Belogurov AA. Nucleotide sequence of the gene (ard) encoding the antirestriction protein of plasmid colIb-P9. J Bacteriol. 1991 Sep;173(18):5887–5892. [PMC free article] [PubMed]
  • Dila D, Raleigh EA. Genetic dissection of the methylcytosine-specific restriction system mcrB of Escherichia coli K-12. Gene. 1988 Dec 25;74(1):23–24. [PubMed]
  • Dila D, Sutherland E, Moran L, Slatko B, Raleigh EA. Genetic and sequence organization of the mcrBC locus of Escherichia coli K-12. J Bacteriol. 1990 Sep;172(9):4888–4900. [PMC free article] [PubMed]
  • Duncan BK, Miller JH. Mutagenic deamination of cytosine residues in DNA. Nature. 1980 Oct 9;287(5782):560–561. [PubMed]
  • Dunn JJ, Studier FW. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol. 1983 Jun 5;166(4):477–535. [PubMed]
  • DUSSOIX D, ARBER W. Host specificity of DNA produced by Escherichia coli. II. Control over acceptance of DNA from infecting phage lambda. J Mol Biol. 1962 Jul;5:37–49. [PubMed]
  • Efimova EP, Delver EP, Belogurov AA. Alleviation of type I restriction in adenine methylase (dam) mutants of Escherichia coli. Mol Gen Genet. 1988 Oct;214(2):313–316. [PubMed]
  • Ehrlich M, Gama-Sosa MA, Carreira LH, Ljungdahl LG, Kuo KC, Gehrke CW. DNA methylation in thermophilic bacteria: N4-methylcytosine, 5-methylcytosine, and N6-methyladenine. Nucleic Acids Res. 1985 Feb 25;13(4):1399–1412. [PMC free article] [PubMed]
  • Ehrlich M, Wang RY. 5-Methylcytosine in eukaryotic DNA. Science. 1981 Jun 19;212(4501):1350–1357. [PubMed]
  • Ehrlich M, Wilson GG, Kuo KC, Gehrke CW. N4-methylcytosine as a minor base in bacterial DNA. J Bacteriol. 1987 Mar;169(3):939–943. [PMC free article] [PubMed]
  • Fuller-Pace FV, Bullas LR, Delius H, Murray NE. Genetic recombination can generate altered restriction specificity. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6095–6099. [PMC free article] [PubMed]
  • Fuller-Pace FV, Cowan GM, Murray NE. EcoA and EcoE: alternatives to the EcoK family of type I restriction and modification systems of Escherichia coli. J Mol Biol. 1985 Nov 5;186(1):65–75. [PubMed]
  • Fuller-Pace FV, Murray NE. Two DNA recognition domains of the specificity polypeptides of a family of type I restriction enzymes. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9368–9372. [PMC free article] [PubMed]
  • Gachechiladze KK, Balardshishvili NS, Adamia RS, Chanishvili TG, Krüger DH. Host-controlled modification and restriction as a criterion of evaluating the therapeutical potential of Pseudomonas phage. J Basic Microbiol. 1991;31(2):101–106. [PubMed]
  • Gann AA, Campbell AJ, Collins JF, Coulson AF, Murray NE. Reassortment of DNA recognition domains and the evolution of new specificities. Mol Microbiol. 1987 Jul;1(1):13–22. [PubMed]
  • Glover SW, Firman K, Watson G, Price C, Donaldson S. The alternate expression of two restriction and modification systems. Mol Gen Genet. 1983;190(1):65–69. [PubMed]
  • Gough JA, Murray NE. Sequence diversity among related genes for recognition of specific targets in DNA molecules. J Mol Biol. 1983 May 5;166(1):1–19. [PubMed]
  • Gromkova R, Goodgal SH. Biological properties of a Haemophilus influenzae restriction enzyme, Hind I. J Bacteriol. 1976 Aug;127(2):848–854. [PMC free article] [PubMed]
  • Gubler M, Bickle TA. Increased protein flexibility leads to promiscuous protein--DNA interactions in type IC restriction-modification systems. EMBO J. 1991 Apr;10(4):951–957. [PMC free article] [PubMed]
  • Gubler M, Braguglia D, Meyer J, Piekarowicz A, Bickle TA. Recombination of constant and variable modules alters DNA sequence recognition by type IC restriction-modification enzymes. EMBO J. 1992 Jan;11(1):233–240. [PMC free article] [PubMed]
  • Guschlbauer W. The DNA and S-adenosylmethionine-binding regions of EcoDam and related methyltransferases. Gene. 1988 Dec 25;74(1):211–214. [PubMed]
  • Hadi SM, Bächi B, Iida S, Bickle TA. DNA restriction--modification enzymes of phage P1 and plasmid p15B. Subunit functions and structural homologies. J Mol Biol. 1983 Mar 25;165(1):19–34. [PubMed]
  • Hadi SM, Bächi B, Shepherd JC, Yuan R, Ineichen K, Bickle TA. DNA recognition and cleavage by the EcoP15 restriction endonuclease. J Mol Biol. 1979 Nov 5;134(3):655–666. [PubMed]
  • Hahn DR, McHenney MA, Baltz RH. Characterization of FP22, a large streptomycete bacteriophage with DNA insensitive to cleavage by many restriction enzymes. J Gen Microbiol. 1990 Dec;136(12):2395–2404. [PubMed]
  • Harrison SC. A structural taxonomy of DNA-binding domains. Nature. 1991 Oct 24;353(6346):715–719. [PubMed]
  • Hattman S, Brooks JE, Masurekar M. Sequence specificity of the P1 modification methylase (M.Eco P1) and the DNA methylase (M.Eco dam) controlled by the Escherichia coli dam gene. J Mol Biol. 1978 Dec 15;126(3):367–380. [PubMed]
  • Hedges RW, Datta N. R124, an fi R factor of a new compatibility class. J Gen Microbiol. 1972 Jul;71(2):403–405. [PubMed]
  • Heidmann S, Seifert W, Kessler C, Domdey H. Cloning, characterization and heterologous expression of the SmaI restriction-modification system. Nucleic Acids Res. 1989 Dec 11;17(23):9783–9796. [PMC free article] [PubMed]
  • Heitman J, Model P. Site-specific methylases induce the SOS DNA repair response in Escherichia coli. J Bacteriol. 1987 Jul;169(7):3243–3250. [PMC free article] [PubMed]
  • Hennecke F, Kolmar H, Bründl K, Fritz HJ. The vsr gene product of E. coli K-12 is a strand- and sequence-specific DNA mismatch endonuclease. Nature. 1991 Oct 24;353(6346):776–778. [PubMed]
  • Hill C, Miller LA, Klaenhammer TR. In vivo genetic exchange of a functional domain from a type II A methylase between lactococcal plasmid pTR2030 and a virulent bacteriophage. J Bacteriol. 1991 Jul;173(14):4363–4370. [PMC free article] [PubMed]
  • Hiom K, Sedgwick SG. Cloning and structural characterization of the mcrA locus of Escherichia coli. J Bacteriol. 1991 Nov;173(22):7368–7373. [PMC free article] [PubMed]
  • Hümbelin M, Suri B, Rao DN, Hornby DP, Eberle H, Pripfl T, Kenel S, Bickle TA. Type III DNA restriction and modification systems EcoP1 and EcoP15. Nucleotide sequence of the EcoP1 operon, the EcoP15 mod gene and some EcoP1 mod mutants. J Mol Biol. 1988 Mar 5;200(1):23–29. [PubMed]
  • Iida S, Meyer J, Bächi B, Stålhammar-Carlemalm M, Schrickel S, Bickle TA, Arber W. DNA restriction--modification genes of phage P1 and plasmid p15B. Structure and in vitro transcription. J Mol Biol. 1983 Mar 25;165(1):1–18. [PubMed]
  • Ives CL, Nathan PD, Brooks JE. Regulation of the BamHI restriction-modification system by a small intergenic open reading frame, bamHIC, in both Escherichia coli and Bacillus subtilis. J Bacteriol. 1992 Nov;174(22):7194–7201. [PMC free article] [PubMed]
  • Jabbar MA, Snyder L. Genetic and physiological studies of an Escherichia coli locus that restricts polynucleotide kinase- and RNA ligase-deficient mutants of bacteriophage T4. J Virol. 1984 Aug;51(2):522–529. [PMC free article] [PubMed]
  • Janulaitis A, Klimasauskas S, Petrusyte M, Butkus V. Cytosine modification in DNA by BcnI methylase yields N4-methylcytosine. FEBS Lett. 1983 Sep 5;161(1):131–134. [PubMed]
  • Kan NC, Lautenberger JA, Edgell MH, Hutchison CA., 3rd The nucleotide sequence recognized by the Escherichia coli K12 restriction and modification enzymes. J Mol Biol. 1979 May 15;130(2):191–209. [PubMed]
  • Kannan P, Cowan GM, Daniel AS, Gann AA, Murray NE. Conservation of organization in the specificity polypeptides of two families of type I restriction enzymes. J Mol Biol. 1989 Oct 5;209(3):335–344. [PubMed]
  • Kapfer W, Walter J, Trautner TA. Cloning, characterization and evolution of the BsuFI restriction endonuclease gene of Bacillus subtilis and purification of the enzyme. Nucleic Acids Res. 1991 Dec 11;19(23):6457–6463. [PMC free article] [PubMed]
  • Kauc L, Piekarowicz A. Purification and properties of a new restriction endonuclease from Haemophilus influenzae Rf. Eur J Biochem. 1978 Dec;92(2):417–426. [PubMed]
  • Kelleher JE, Raleigh EA. A novel activity in Escherichia coli K-12 that directs restriction of DNA modified at CG dinucleotides. J Bacteriol. 1991 Aug;173(16):5220–5223. [PMC free article] [PubMed]
  • Kelleher JE, Daniel AS, Murray NE. Mutations that confer de novo activity upon a maintenance methyltransferase. J Mol Biol. 1991 Sep 20;221(2):431–440. [PubMed]
  • Kessler C, Manta V. Specificity of restriction endonucleases and DNA modification methyltransferases a review (Edition 3). Gene. 1990 Aug 16;92(1-2):1–248. [PubMed]
  • Kiss A, Posfai G, Keller CC, Venetianer P, Roberts RJ. Nucleotide sequence of the BsuRI restriction-modification system. Nucleic Acids Res. 1985 Sep 25;13(18):6403–6421. [PMC free article] [PubMed]
  • Kita K, Kotani H, Sugisaki H, Takanami M. The fokI restriction-modification system. I. Organization and nucleotide sequences of the restriction and modification genes. J Biol Chem. 1989 Apr 5;264(10):5751–5756. [PubMed]
  • Klimasauskas S, Nelson JL, Roberts RJ. The sequence specificity domain of cytosine-C5 methylases. Nucleic Acids Res. 1991 Nov 25;19(22):6183–6190. [PMC free article] [PubMed]
  • Klimasauskas S, Timinskas A, Menkevicius S, Butkienè D, Butkus V, Janulaitis A. Sequence motifs characteristic of DNA[cytosine-N4]methyltransferases: similarity to adenine and cytosine-C5 DNA-methylases. Nucleic Acids Res. 1989 Dec 11;17(23):9823–9832. [PMC free article] [PubMed]
  • Kretz PL, Kohler SW, Short JM. Identification and characterization of a gene responsible for inhibiting propagation of methylated DNA sequences in mcrA mcrB1 Escherichia coli strains. J Bacteriol. 1991 Aug;173(15):4707–4716. [PMC free article] [PubMed]
  • Kröger M, Hobom G. The nucleotide recognized by the Escherichia coli A restriction and modification enzyme. Nucleic Acids Res. 1984 Jan 25;12(2):887–899. [PMC free article] [PubMed]
  • Krüger DH, Barcak GJ, Reuter M, Smith HO. EcoRII can be activated to cleave refractory DNA recognition sites. Nucleic Acids Res. 1988 May 11;16(9):3997–4008. [PMC free article] [PubMed]
  • Krüger DH, Bickle TA. Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol Rev. 1983 Sep;47(3):345–360. [PMC free article] [PubMed]
  • Krüger DH, Schroeder C, Reuter M, Bogdarina IG, Buryanov YI, Bickle TA. DNA methylation of bacterial viruses T3 and T7 by different DNA methylases in Escherichia coli K12 cells. Eur J Biochem. 1985 Jul 15;150(2):323–330. [PubMed]
  • Krüger DH, Schroeder C, Santibanez-Koref M, Reuter M. Avoidance of DNA methylation. A virus-encoded methylase inhibitor and evidence for counterselection of methylase recognition sites in viral genomes. Cell Biophys. 1989 Aug-Oct;15(1-2):87–95. [PubMed]
  • Krüger T, Grund C, Wild C, Noyer-Weidner M. Characterization of the mcrBC region of Escherichia coli K-12 wild-type and mutant strains. Gene. 1992 May 1;114(1):1–12. [PubMed]
  • Lacks S, Greenberg B. Complementary specificity of restriction endonucleases of Diplococcus pneumoniae with respect to DNA methylation. J Mol Biol. 1977 Jul;114(1):153–168. [PubMed]
  • Lacks SA, Mannarelli BM, Springhorn SS, Greenberg B. Genetic basis of the complementary DpnI and DpnII restriction systems of S. pneumoniae: an intercellular cassette mechanism. Cell. 1986 Sep 26;46(7):993–1000. [PubMed]
  • Lacks SA, Springhorn SS. Transfer of recombinant plasmids containing the gene for DpnII DNA methylase into strains of Streptococcus pneumoniae that produce DpnI or DpnII restriction endonucleases. J Bacteriol. 1984 Jun;158(3):905–909. [PMC free article] [PubMed]
  • Landry D, Looney MC, Feehery GR, Slatko BE, Jack WE, Schildkraut I, Wilson GG. M.FokI methylates adenine in both strands of its asymmetric recognition sequence. Gene. 1989 Apr 15;77(1):1–10. [PubMed]
  • Lange C, Jugel A, Walter J, Noyer-Weidner M, Trautner TA. 'Pseudo' domains in phage-encoded DNA methyltransferases. Nature. 1991 Aug 15;352(6336):645–648. [PubMed]
  • Lange C, Noyer-Weidner M, Trautner TA, Weiner M, Zahler SA. M.H2I, a multispecific 5C-DNA methyltransferase encoded by Bacillus amyloliquefaciens phage H2. Gene. 1991 Apr;100:213–218. [PubMed]
  • Lauster R. Evolution of type II DNA methyltransferases. A gene duplication model. J Mol Biol. 1989 Mar 20;206(2):313–321. [PubMed]
  • Lauster R, Kriebardis A, Guschlbauer W. The GATATC-modification enzyme EcoRV is closely related to the GATC-recognizing methyltransferases DpnII and dam from E. coli and phage T4. FEBS Lett. 1987 Aug 10;220(1):167–176. [PubMed]
  • Lauster R, Trautner TA, Noyer-Weidner M. Cytosine-specific type II DNA methyltransferases. A conserved enzyme core with variable target-recognizing domains. J Mol Biol. 1989 Mar 20;206(2):305–312. [PubMed]
  • Lautenberger JA, Kan NC, Lackey D, Linn S, Edgell MH, Hutchison CA., 3rd Recognition site of Escherichia coli B restriction enzyme on phi XsB1 and simian virus 40 DNAs: an interrupted sequence. Proc Natl Acad Sci U S A. 1978 May;75(5):2271–2275. [PMC free article] [PubMed]
  • Levitz R, Chapman D, Amitsur M, Green R, Snyder L, Kaufmann G. The optional E. coli prr locus encodes a latent form of phage T4-induced anticodon nuclease. EMBO J. 1990 May;9(5):1383–1389. [PMC free article] [PubMed]
  • Lieb M. Specific mismatch correction in bacteriophage lambda crosses by very short patch repair. Mol Gen Genet. 1983;191(1):118–125. [PubMed]
  • Lieb M. Spontaneous mutation at a 5-methylcytosine hotspot is prevented by very short patch (VSP) mismatch repair. Genetics. 1991 May;128(1):23–27. [PMC free article] [PubMed]
  • Linder P, Doelz R, Gubler M, Bickle TA. An anticodon nuclease gene inserted into a hsd region encoding a type I DNA restriction system. Nucleic Acids Res. 1990 Dec 11;18(23):7170–7170. [PMC free article] [PubMed]
  • Linn S, Arber W. Host specificity of DNA produced by Escherichia coli, X. In vitro restriction of phage fd replicative form. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1300–1306. [PMC free article] [PubMed]
  • Loenen WA, Murray NE. Modification enhancement by the restriction alleviation protein (Ral) of bacteriophage lambda. J Mol Biol. 1986 Jul 5;190(1):11–22. [PubMed]
  • Loenen WA, Daniel AS, Braymer HD, Murray NE. Organization and sequence of the hsd genes of Escherichia coli K-12. J Mol Biol. 1987 Nov 20;198(2):159–170. [PubMed]
  • Looney MC, Moran LS, Jack WE, Feehery GR, Benner JS, Slatko BE, Wilson GG. Nucleotide sequence of the FokI restriction-modification system: separate strand-specificity domains in the methyltransferase. Gene. 1989 Aug 15;80(2):193–208. [PubMed]
  • Luria SE. The recognition of DNA in bacteria. Sci Am. 1970 Jan;222(1):88–passim. [PubMed]
  • LURIA SE, HUMAN ML. A nonhereditary, host-induced variation of bacterial viruses. J Bacteriol. 1952 Oct;64(4):557–569. [PMC free article] [PubMed]
  • MacNeil DJ. Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. J Bacteriol. 1988 Dec;170(12):5607–5612. [PMC free article] [PubMed]
  • McClelland M. Selection against dam methylation sites in the genomes of DNA of enterobacteriophages. J Mol Evol. 1984;21(4):317–322. [PubMed]
  • McClelland M, Nelson M, Cantor CR. Purification of Mbo II methylase (GAAGmA) from Moraxella bovis: site specific cleavage of DNA at nine and ten base pair sequences. Nucleic Acids Res. 1985 Oct 25;13(20):7171–7182. [PMC free article] [PubMed]
  • Meisel A, Bickle TA, Krüger DH, Schroeder C. Type III restriction enzymes need two inversely oriented recognition sites for DNA cleavage. Nature. 1992 Jan 30;355(6359):467–469. [PubMed]
  • Meisel A, Krüger DH, Bickle TA. M.EcoP15 methylates the second adenine in its recognition sequence. Nucleic Acids Res. 1991 Jul 25;19(14):3997–3997. [PMC free article] [PubMed]
  • Meselson M, Yuan R, Heywood J. Restriction and modification of DNA. Annu Rev Biochem. 1972;41:447–466. [PubMed]
  • Modrich P. Structures and mechanisms of DNA restriction and modification enzymes. Q Rev Biophys. 1979 Aug;12(3):315–369. [PubMed]
  • Moffatt BA, Studier FW. Entry of bacteriophage T7 DNA into the cell and escape from host restriction. J Bacteriol. 1988 May;170(5):2095–2105. [PMC free article] [PubMed]
  • Murray NE, Gough JA, Suri B, Bickle TA. Structural homologies among type I restriction-modification systems. EMBO J. 1982;1(5):535–539. [PMC free article] [PubMed]
  • Nagaraja V, Shepherd JC, Bickle TA. A hybrid recognition sequence in a recombinant restriction enzyme and the evolution of DNA sequence specificity. Nature. 1985 Jul 25;316(6026):371–372. [PubMed]
  • Nagaraja V, Shepherd JC, Pripfl T, Bickle TA. Two type I restriction enzymes from Salmonella species. Purification and DNA recognition sequences. J Mol Biol. 1985 Apr 20;182(4):579–587. [PubMed]
  • Nagaraja V, Stieger M, Nager C, Hadi SM, Bickle TA. The nucleotide sequence recognised by the Escherichia coli D type I restriction and modification enzyme. Nucleic Acids Res. 1985 Jan 25;13(2):389–399. [PMC free article] [PubMed]
  • Narva KE, Van Etten JL, Slatko BE, Benner JS. The amino acid sequence of the eukaryotic DNA [N6-adenine]methyltransferase, M.CviBIII, has regions of similarity with the prokaryotic isoschizomer M.TaqI and other DNA [N6-adenine] methyltransferases. Gene. 1988 Dec 25;74(1):253–259. [PubMed]
  • Nathan PD, Brooks JE. Characterization of clones of the BamHI methyltransferase gene. Gene. 1988 Dec 25;74(1):35–36. [PubMed]
  • Nelson M, McClelland M. Site-specific methylation: effect on DNA modification methyltransferases and restriction endonucleases. Nucleic Acids Res. 1991 Apr 25;19 (Suppl):2045–2071. [PMC free article] [PubMed]
  • Noyer-Weidner M, Diaz R, Reiners L. Cytosine-specific DNA modification interferes with plasmid establishment in Escherichia coli K12: involvement of rglB. Mol Gen Genet. 1986 Dec;205(3):469–475. [PubMed]
  • Noyer-Weidner M, Jentsch S, Pawlek B, Günthert U, Trautner TA. Restriction and modification in Bacillus subtilis: DNA methylation potential of the related bacteriophages Z, SPR, SP beta, phi 3T, and rho 11. J Virol. 1983 May;46(2):446–453. [PMC free article] [PubMed]
  • Noyer-Weidner M, Trautner TA. Methylation of DNA in prokaryotes. EXS. 1993;64:39–108. [PubMed]
  • Oller AR, Vanden Broek W, Conrad M, Topal MD. Ability of DNA and spermidine to affect the activity of restriction endonucleases from several bacterial species. Biochemistry. 1991 Mar 5;30(9):2543–2549. [PubMed]
  • Pein CD, Reuter M, Cech D, Krüger DH. Oligonucleotide duplexes containing CC(A/T)GG stimulate cleavage of refractory DNA by restriction endonuclease EcoRII. FEBS Lett. 1989 Mar 13;245(1-2):141–144. [PubMed]
  • Pein CD, Reuter M, Meisel A, Cech D, Krüger DH. Activation of restriction endonuclease EcoRII does not depend on the cleavage of stimulator DNA. Nucleic Acids Res. 1991 Oct 11;19(19):5139–5142. [PMC free article] [PubMed]
  • Piekarowicz A. HineI is an isoschizomer of HinfIII restriction endonuclease. J Mol Biol. 1982 May 15;157(2):373–381. [PubMed]
  • Piekarowicz A, Bickle TA, Shepherd JC, Ineichen K. The DNA sequence recognised by the HinfIII restriction endonuclease. J Mol Biol. 1981 Feb 15;146(1):167–172. [PubMed]
  • Piekarowicz A, Goguen JD. The DNA sequence recognized by the EcoDXX1 restriction endonuclease. Eur J Biochem. 1986 Jan 15;154(2):295–298. [PubMed]
  • Piekarowicz A, Goguen JD, Skrzypek E. The EcoDXX1 restriction and modification system of Escherichia coli ET7. Purification, subunit structure and properties of the restriction endonuclease. Eur J Biochem. 1985 Oct 15;152(2):387–393. [PubMed]
  • Piekarowicz A, Yuan R, Stein DC. Isolation of temperature-sensitive McrA and McrB mutations and complementation analysis of the McrBC region of Escherichia coli K-12. J Bacteriol. 1991 Jan;173(1):150–155. [PMC free article] [PubMed]
  • Pósfai J, Bhagwat AS, Pósfai G, Roberts RJ. Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res. 1989 Apr 11;17(7):2421–2435. [PMC free article] [PubMed]
  • Price C, Bickle TA. A possible role for DNA restriction in bacterial evolution. Microbiol Sci. 1986 Oct;3(10):296–299. [PubMed]
  • Price C, Lingner J, Bickle TA, Firman K, Glover SW. Basis for changes in DNA recognition by the EcoR124 and EcoR124/3 type I DNA restriction and modification enzymes. J Mol Biol. 1989 Jan 5;205(1):115–125. [PubMed]
  • Price C, Pripfl T, Bickle TA. EcoR124 and EcoR124/3: the first members of a new family of type I restriction and modification systems. Eur J Biochem. 1987 Aug 17;167(1):111–115. [PubMed]
  • Price C, Shepherd JC, Bickle TA. DNA recognition by a new family of type I restriction enzymes: a unique relationship between two different DNA specificities. EMBO J. 1987 May;6(5):1493–1497. [PMC free article] [PubMed]
  • Raleigh EA. Organization and function of the mcrBC genes of Escherichia coli K-12. Mol Microbiol. 1992 May;6(9):1079–1086. [PubMed]
  • Raleigh EA, Benner J, Bloom F, Braymer HD, DeCruz E, Dharmalingam K, Heitman J, Noyer Weidner M, Piekarowicz A, Kretz PL, et al. Nomenclature relating to restriction of modified DNA in Escherichia coli. J Bacteriol. 1991 Apr;173(8):2707–2709. [PMC free article] [PubMed]
  • Raleigh EA, Murray NE, Revel H, Blumenthal RM, Westaway D, Reith AD, Rigby PW, Elhai J, Hanahan D. McrA and McrB restriction phenotypes of some E. coli strains and implications for gene cloning. Nucleic Acids Res. 1988 Feb 25;16(4):1563–1575. [PMC free article] [PubMed]
  • Raleigh EA, Trimarchi R, Revel H. Genetic and physical mapping of the mcrA (rglA) and mcrB (rglB) loci of Escherichia coli K-12. Genetics. 1989 Jun;122(2):279–296. [PMC free article] [PubMed]
  • Raleigh EA, Wilson G. Escherichia coli K-12 restricts DNA containing 5-methylcytosine. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9070–9074. [PMC free article] [PubMed]
  • Rao DN, Eberle H, Bickle TA. Characterization of mutations of the bacteriophage P1 mod gene encoding the recognition subunit of the EcoP1 restriction and modification system. J Bacteriol. 1989 May;171(5):2347–2352. [PMC free article] [PubMed]
  • Rao DN, Page MG, Bickle TA. Cloning, over-expression and the catalytic properties of the EcoP15 modification methylase from Escherichia coli. J Mol Biol. 1989 Oct 20;209(4):599–606. [PubMed]
  • Ravetch JV, Horiuchi K, Zinder ND. Nucleotide sequence of the recognition site for the restriction-modification enzyme of Escherichia coli B. Proc Natl Acad Sci U S A. 1978 May;75(5):2266–2270. [PMC free article] [PubMed]
  • Ravi RS, Sozhamannan S, Dharmalingam K. Transposon mutagenesis and genetic mapping of the rglA and rglB loci of Escherichia coli. Mol Gen Genet. 1985;198(3):390–392. [PubMed]
  • Read TD, Thomas AT, Wilkins BM. Evasion of type I and type II DNA restriction systems by IncI1 plasmid CoIIb-P9 during transfer by bacterial conjugation. Mol Microbiol. 1992 Jul;6(14):1933–1941. [PubMed]
  • Reuter M, Kupper D, Pein CD, Petrusyte M, Siksnys V, Frey B, Krüger DH. Use of specific oligonucleotide duplexes to stimulate cleavage of refractory DNA sites by restriction endonucleases. Anal Biochem. 1993 Mar;209(2):232–237. [PubMed]
  • Reuter M, Pein CD, Butkus V, Krüger DH. An improved method for the detection of Dcm methylation in DNA molecules. Gene. 1990 Oct 30;95(1):161–162. [PubMed]
  • Revel HR, Luria SE. DNA-glucosylation in T-even phage: genetic determination and role in phagehost interaction. Annu Rev Genet. 1970;4(0):177–192. [PubMed]
  • Riggs AD. DNA methylation and cell memory. Cell Biophys. 1989 Aug-Oct;15(1-2):1–13. [PubMed]
  • Rosner JL. Modification-deficient mutants of bacteriophage P1. I. Restriction by P1 cryptic lysogens. Virology. 1973 Mar;52(1):213–222. [PubMed]
  • Ross TK, Achberger EC, Braymer HD. Identification of a second polypeptide required for McrB restriction of 5-methylcytosine-containing DNA in Escherichia coli K12. Mol Gen Genet. 1989 Apr;216(2-3):402–407. [PubMed]
  • Ross TK, Achberger EC, Braymer HD. Nucleotide sequence of the McrB region of Escherichia coli K-12 and evidence for two independent translational initiation sites at the mcrB locus. J Bacteriol. 1989 Apr;171(4):1974–1981. [PMC free article] [PubMed]
  • Sain B, Murray NE. The hsd (host specificity) genes of E. coli K 12. Mol Gen Genet. 1980;180(1):35–46. [PubMed]
  • Schroeder C, Jurkschat H, Meisel A, Reich JG, Krüger D. Unusual occurrence of EcoP1 and EcoP15 recognition sites and counterselection of type II methylation and restriction sequences in bacteriophage T7 DNA. Gene. 1986;45(1):77–86. [PubMed]
  • Scott JR. Genetic studies on bacteriophage P1. Virology. 1968 Dec;36(4):564–574. [PubMed]
  • Scott JR. Clear plaque mutants of phage P1. Virology. 1970 May;41(1):66–71. [PubMed]
  • Sharp PM. Molecular evolution of bacteriophages: evidence of selection against the recognition sites of host restriction enzymes. Mol Biol Evol. 1986 Jan;3(1):75–83. [PubMed]
  • Skrzypek E, Piekarowicz A. The EcoDXX1 restriction and modification system: cloning the genes and homology to type I restriction and modification systems. Plasmid. 1989 May;21(3):195–204. [PubMed]
  • Slatko BE, Benner JS, Jager-Quinton T, Moran LS, Simcox TG, Van Cott EM, Wilson GG. Cloning, sequencing and expression of the Taq I restriction-modification system. Nucleic Acids Res. 1987 Dec 10;15(23):9781–9796. [PMC free article] [PubMed]
  • Smith GR. Mechanism and control of homologous recombination in Escherichia coli. Annu Rev Genet. 1987;21:179–201. [PubMed]
  • Smith HO, Annau TM, Chandrasegaran S. Finding sequence motifs in groups of functionally related proteins. Proc Natl Acad Sci U S A. 1990 Jan;87(2):826–830. [PMC free article] [PubMed]
  • Sohail A, Lieb M, Dar M, Bhagwat AS. A gene required for very short patch repair in Escherichia coli is adjacent to the DNA cytosine methylase gene. J Bacteriol. 1990 Aug;172(8):4214–4221. [PMC free article] [PubMed]
  • Sommer R, Schaller H. Nucleotide sequence of the recognition site of the B-specific restriction modification system in E. coli. Mol Gen Genet. 1979 Jan 11;168(3):331–335. [PubMed]
  • Spoerel N, Herrlich P, Bickle TA. A novel bacteriophage defence mechanism: the anti-restriction protein. Nature. 1979 Mar 1;278(5699):30–34. [PubMed]
  • Stephenson FH, Ballard BT, Boyer HW, Rosenberg JM, Greene PJ. Comparison of the nucleotide and amino acid sequences of the RsrI and EcoRI restriction endonucleases. Gene. 1989 Dec 21;85(1):1–13. [PubMed]
  • Studier FW, Movva NR. SAMase gene of bacteriophage T3 is responsible for overcoming host restriction. J Virol. 1976 Jul;19(1):136–145. [PMC free article] [PubMed]
  • Sugisaki H, Kita K, Takanami M. The FokI restriction-modification system. II. Presence of two domains in FokI methylase responsible for modification of different DNA strands. J Biol Chem. 1989 Apr 5;264(10):5757–5761. [PubMed]
  • Sugisaki H, Yamamoto K, Takanami M. The HgaI restriction-modification system contains two cytosine methylase genes responsible for modification of different DNA strands. J Biol Chem. 1991 Jul 25;266(21):13952–13957. [PubMed]
  • Sullivan KM, Saunders JR. Nucleotide sequence and genetic organization of the NgoPII restriction-modification system of Neisseria gonorrhoeae. Mol Gen Genet. 1989 Apr;216(2-3):380–387. [PubMed]
  • Suri B, Bickle TA. EcoA: the first member of a new family of type I restriction modification systems. Gene organization and enzymatic activities. J Mol Biol. 1985 Nov 5;186(1):77–85. [PubMed]
  • Suri B, Nagaraja V, Bickle TA. Bacterial DNA modification. Curr Top Microbiol Immunol. 1984;108:1–9. [PubMed]
  • Suri B, Shepherd JC, Bickle TA. The EcoA restriction and modification system of Escherichia coli 15T-: enzyme structure and DNA recognition sequence. EMBO J. 1984 Mar;3(3):575–579. [PMC free article] [PubMed]
  • Sutherland E, Coe L, Raleigh EA. McrBC: a multisubunit GTP-dependent restriction endonuclease. J Mol Biol. 1992 May 20;225(2):327–348. [PubMed]
  • Szybalski W, Kim SC, Hasan N, Podhajska AJ. Class-IIS restriction enzymes--a review. Gene. 1991 Apr;100:13–26. [PubMed]
  • Tao T, Blumenthal RM. Sequence and characterization of pvuIIR, the PvuII endonuclease gene, and of pvuIIC, its regulatory gene. J Bacteriol. 1992 May;174(10):3395–3398. [PMC free article] [PubMed]
  • Tao T, Bourne JC, Blumenthal RM. A family of regulatory genes associated with type II restriction-modification systems. J Bacteriol. 1991 Feb;173(4):1367–1375. [PMC free article] [PubMed]
  • Tao T, Walter J, Brennan KJ, Cotterman MM, Blumenthal RM. Sequence, internal homology and high-level expression of the gene for a DNA-(cytosine N4)-methyltransferase, M.Pvu II. Nucleic Acids Res. 1989 Jun 12;17(11):4161–4175. [PMC free article] [PubMed]
  • Terschüren PA, Noyer-Weidner M, Trautner TA. Recombinant derivatives of Bacillus subtilis phage Z containing the DNA methyltransferase genes of related methylation-proficient phages. J Gen Microbiol. 1987 Apr;133(4):945–952. [PubMed]
  • Theriault G, Roy PH, Howard KA, Benner JS, Brooks JE, Waters AF, Gingeras TR. Nucleotide sequence of the PaeR7 restriction/modification system and partial characterization of its protein products. Nucleic Acids Res. 1985 Dec 9;13(23):8441–8461. [PMC free article] [PubMed]
  • Topal MD, Thresher RJ, Conrad M, Griffith J. NaeI endonuclease binding to pBR322 DNA induces looping. Biochemistry. 1991 Feb 19;30(7):2006–2010. [PubMed]
  • Tran-Betcke A, Behrens B, Noyer-Weidner M, Trautner TA. DNA methyltransferase genes of Bacillus subtilis phages: comparison of their nucleotide sequences. Gene. 1986;42(1):89–96. [PubMed]
  • Trautner TA, Balganesh T, Wilke K, Noyer-Weidner M, Rauhut E, Lauster R, Behrens B, Pawlek B. Organization of target-recognizing domains in the multispecific DNA (cytosine-5)methyltransferases of Bacillus subtilis phages SPR and phi 3T. Gene. 1988 Dec 25;74(1):267–267. [PubMed]
  • Trautner TA, Balganesh TS, Pawlek B. Chimeric multispecific DNA methyltransferases with novel combinations of target recognition. Nucleic Acids Res. 1988 Jul 25;16(14A):6649–6658. [PMC free article] [PubMed]
  • Vesely Z, Müller A, Schmitz GG, Kaluza K, Jarsch M, Kessler C. RleAI: a novel class-IIS restriction endonuclease from Rhizobium leguminosarum recognizing 5'-CCCACA(N)12-3' 3'-GGGTGT(N)9-5'. Gene. 1990 Oct 30;95(1):129–131. [PubMed]
  • Vovis GF, Horiuchi K, Zinder ND. Kinetics of methylation of DNA by a restriction endonuclease from Escherichia coli B. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3810–3813. [PMC free article] [PubMed]
  • Waite-Rees PA, Keating CJ, Moran LS, Slatko BE, Hornstra LJ, Benner JS. Characterization and expression of the Escherichia coli Mrr restriction system. J Bacteriol. 1991 Aug;173(16):5207–5219. [PMC free article] [PubMed]
  • Walter J, Noyer-Weidner M, Trautner TA. The amino acid sequence of the CCGG recognizing DNA methyltransferase M.BsuFI: implications for the analysis of sequence recognition by cytosine DNA methyltransferases. EMBO J. 1990 Apr;9(4):1007–1013. [PMC free article] [PubMed]
  • Wang RY, Kuo KC, Gehrke CW, Huang LH, Ehrlich M. Heat- and alkali-induced deamination of 5-methylcytosine and cytosine residues in DNA. Biochim Biophys Acta. 1982 Jun 30;697(3):371–377. [PubMed]
  • Whittaker PA, Campbell AJ, Southern EM, Murray NE. Enhanced recovery and restriction mapping of DNA fragments cloned in a new lambda vector. Nucleic Acids Res. 1988 Jul 25;16(14B):6725–6736. [PMC free article] [PubMed]
  • Wiebauer K, Jiricny J. In vitro correction of G.T mispairs to G.C pairs in nuclear extracts from human cells. Nature. 1989 May 18;339(6221):234–236. [PubMed]
  • Wilke K, Rauhut E, Noyer-Weidner M, Lauster R, Pawlek B, Behrens B, Trautner TA. Sequential order of target-recognizing domains in multispecific DNA-methyltransferases. EMBO J. 1988 Aug;7(8):2601–2609. [PMC free article] [PubMed]
  • Wilson GG. Type II restriction--modification systems. Trends Genet. 1988 Nov;4(11):314–318. [PubMed]
  • Wilson GG. Organization of restriction-modification systems. Nucleic Acids Res. 1991 May 25;19(10):2539–2566. [PMC free article] [PubMed]
  • Wilson GG, Murray NE. Restriction and modification systems. Annu Rev Genet. 1991;25:585–627. [PubMed]
  • Woodcock DM, Crowther PJ, Diver WP, Graham M, Bateman C, Baker DJ, Smith SS. RglB facilitated cloning of highly methylated eukaryotic DNA: the human L1 transposon, plant DNA, and DNA methylated in vitro with human DNA methyltransferase. Nucleic Acids Res. 1988 May 25;16(10):4465–4482. [PMC free article] [PubMed]
  • Woodcock DM, Crowther PJ, Doherty J, Jefferson S, DeCruz E, Noyer-Weidner M, Smith SS, Michael MZ, Graham MW. Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res. 1989 May 11;17(9):3469–3478. [PMC free article] [PubMed]
  • Yoshimori R, Roulland-Dussoix D, Boyer HW. R factor-controlled restriction and modification of deoxyribonucleic acid: restriction mutants. J Bacteriol. 1972 Dec;112(3):1275–1279. [PMC free article] [PubMed]
  • Yuan R. Structure and mechanism of multifunctional restriction endonucleases. Annu Rev Biochem. 1981;50:285–319. [PubMed]
  • Zell R, Fritz HJ. DNA mismatch-repair in Escherichia coli counteracting the hydrolytic deamination of 5-methyl-cytosine residues. EMBO J. 1987 Jun;6(6):1809–1815. [PMC free article] [PubMed]
  • Zheng L, Braymer HD. Overproduction and purification of McrC protein from Escherichia coli K-12. J Bacteriol. 1991 Jun;173(12):3918–3920. [PMC free article] [PubMed]
  • Zheng L, Wang X, Braymer HD. Purification and N-terminal amino acid sequences of two polypeptides encoded by the mcrB gene from Escherichia coli K-12. Gene. 1992 Mar 1;112(1):97–100. [PubMed]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...