• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of microrevMicrobiol Mol Biol Rev ArchivePermissionsJournals.ASM.orgMMBR ArticleJournal InfoAuthorsReviewers
Microbiol Rev. Mar 1991; 55(1): 35–58.
PMCID: PMC372800

Cellulose biosynthesis and function in bacteria.

Abstract

The current model of cellulose biogenesis in plants, as well as bacteria, holds that the membranous cellulose synthase complex polymerizes glucose moieties from UDP-Glc into beta-1,4-glucan chains which give rise to rigid crystalline fibrils upon extrusion at the outer surface of the cell. The distinct arrangement and degree of association of the polymerizing enzyme units presumably govern extracellular chain assembly in addition to the pattern and width of cellulose fibril deposition. Most evident for Acetobacter xylinum, polymerization and assembly appear to be tightly coupled. To date, only bacteria have been effectively studied at the biochemical and genetic levels. In A. xylinum, the cellulose synthase, composed of at least two structurally similar but functionally distinct subunits, is subject to a multicomponent regulatory system. Regulation is based on the novel nucleotide cyclic diguanylic acid, a positive allosteric effector, and the regulatory enzymes maintaining its intracellular turnover: diguanylate cyclase and Ca2(+)-sensitive bis-(3',5')-cyclic diguanylic acid (c-di-GMP) phosphodiesterase. Four genes have been isolated from A. xylinum which constitute the operon for cellulose synthesis. The second gene encodes the catalytic subunit of cellulose synthase; the functions of the other three gene products are still unknown. Exclusively an extracellular product, bacterial cellulose appears to fulfill diverse biological roles within the natural habitat, conferring mechanical, chemical, and physiological protection in A. xylinum and Sarcina ventriculi or facilitating cell adhesion during symbiotic or infectious interactions in Rhizobium and Agrobacterium species. A. xylinum is proving to be most amenable for industrial purposes, allowing the unique features of bacterial cellulose to be exploited for novel product applications.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (5.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aloni Y, Cohen R, Benziman M, Delmer D. Solubilization of the UDP-glucose:1,4-beta-D-glucan 4-beta-D-glucosyltransferase (cellulose synthase) from Acetobacter xylinum. A comparison of regulatory properties with those of the membrane-bound form of the enzyme. J Biol Chem. 1983 Apr 10;258(7):4419–4423. [PubMed]
  • Aloni Y, Delmer DP, Benziman M. Achievement of high rates of in vitro synthesis of 1,4-beta-D-glucan: activation by cooperative interaction of the Acetobacter xylinum enzyme system with GTP, polyethylene glycol, and a protein factor. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6448–6452. [PMC free article] [PubMed]
  • Amikam D, Benziman M. Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol. 1989 Dec;171(12):6649–6655. [PMC free article] [PubMed]
  • Arthur LO, Bulla LA, Jr, Julian GS, Nakamura LK. Carbohydrate metabolism in Agrobacterium tumefaciens. J Bacteriol. 1973 Oct;116(1):304–313. [PMC free article] [PubMed]
  • Benziman M. Role of phosphoenolpyruvate carboxylation in Acetobacter xylinum. J Bacteriol. 1969 Jun;98(3):1005–1010. [PMC free article] [PubMed]
  • Benziman M. Factors afecting the activity of pyruvate kinase of Acetobacter xylinum. Biochem J. 1969 May;112(5):631–636. [PMC free article] [PubMed]
  • BENZIMAN M, BURGER-RACHAMIMOV H. Synthesis of cellulose from pyruvate by succinate-grown cells of Acetobacter xylinum. J Bacteriol. 1962 Oct;84:625–630. [PMC free article] [PubMed]
  • Benziman M, Eizen N. Pyruvate-phosphate dikinase and the control of gluconeogenesis in Acetobacter xylinum. J Biol Chem. 1971 Jan 10;246(1):57–61. [PubMed]
  • BENZIMAN M, GALANTER Y. FLAVINE ADENINE DINUCLEOTIDE-LINKED MALIC DEHYDROGENASE FROM ACETOBACTER XYLINUM. J Bacteriol. 1964 Oct;88:1010–1018. [PMC free article] [PubMed]
  • Benziman M, Haigler CH, Brown RM, White AR, Cooper KM. Cellulose biogenesis: Polymerization and crystallization are coupled processes in Acetobacter xylinum. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6678–6682. [PMC free article] [PubMed]
  • Benziman M, Mazover A. Nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-specific glucose 6-phosphate dehydrogenases of Acetobacter xylinum and their role in the regulation of the pentose cycle. J Biol Chem. 1973 Mar 10;248(5):1603–1608. [PubMed]
  • Benziman M, Palgi A. Characterization and properties of the pyruvate phosphorylation system of Acetobacter xylinum. J Bacteriol. 1970 Oct;104(1):211–218. [PMC free article] [PubMed]
  • Benziman M, Rivetz B. Factors affecting hexose phosphorylation in Acetobacter xylinum. J Bacteriol. 1972 Aug;111(2):325–333. [PMC free article] [PubMed]
  • Benziman M, Russo A, Hochman S, Weinhouse H. Purification and regulatory properties of the oxaloacetate decarboxylase of Acetobacter xylinum. J Bacteriol. 1978 Apr;134(1):1–9. [PMC free article] [PubMed]
  • Björndal H, Erbing C, Lindberg B, Fåhraeus G, Ljunggren H. Studies on an extracellular polysaccharide from Rhizobium meliloti. Acta Chem Scand. 1971;25(4):1281–1286. [PubMed]
  • Blommers MJ, Haasnoot CA, Walters JA, van der Marel GA, van Boom JH, Hilbers CW. Solution structure of the 3'-5' cyclic dinucleotide d(pApA). A combined NMR, UV melting, and molecular mechanics study. Biochemistry. 1988 Nov 1;27(22):8361–8369. [PubMed]
  • Bochner BR, Ames BN. Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J Biol Chem. 1982 Aug 25;257(16):9759–9769. [PubMed]
  • Brown RM., Jr Cellulose microfibril assembly and orientation: recent developments. J Cell Sci Suppl. 1985;2:13–32. [PubMed]
  • Brown RM, Jr, Willison JH, Richardson CL. Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4565–4569. [PMC free article] [PubMed]
  • Bureau TE, Brown RM. In vitro synthesis of cellulose II from a cytoplasmic membrane fraction of Acetobacter xylinum. Proc Natl Acad Sci U S A. 1987 Oct;84(20):6985–6989. [PMC free article] [PubMed]
  • Callaghan T, Ross P, Weinberger-Ohana P, Benziman M. beta-Glucoside Activators of Mung Bean UDP-Glucose: beta-Glucan Synthase : II. Comparison of Effects of an Endogenous beta-Linked Glucolipid with Synthetic n-Alkyl beta-d-Monoglucopyranosides. Plant Physiol. 1988 Apr;86(4):1104–1107. [PMC free article] [PubMed]
  • Canale-Parola E. Biology of the sugar-fermenting Sarcinae. Bacteriol Rev. 1970 Mar;34(1):82–97. [PMC free article] [PubMed]
  • CANALE-PAROLA E, BORASKY R, WOLFE RS. Studies on Sarcina ventriculi. III. Localization of cellulose. J Bacteriol. 1961 Feb;81:311–318. [PMC free article] [PubMed]
  • CANALE-PAROLA E, WOLFE RS. SYNTHESIS OF CELLULOSE BY SARCINA VENTRICULI. Biochim Biophys Acta. 1964 Feb 10;82:403–405. [PubMed]
  • Carpita N, Sabularse D, Montezinos D, Delmer DP. Determination of the pore size of cell walls of living plant cells. Science. 1979 Sep 14;205(4411):1144–1147. [PubMed]
  • Cooper D, Manley RS. Cellulose synthesis by Acetobacter xylinum. II. Investigation into the relation between cellulose synthesis and cell envelope components. Biochim Biophys Acta. 1975 Jan 13;381(1):97–108. [PubMed]
  • Deinema MH, Zevenhuizen LP. Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation. Arch Mikrobiol. 1971;78(1):42–51. [PubMed]
  • Delmer DP. Biosynthesis of cellulose. Adv Carbohydr Chem Biochem. 1983;41:105–153. [PubMed]
  • Delmer DP, Benziman M, Padan E. Requirement for a membrane potential for cellulose synthesis in intact cells of Acetobacter xylinum. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5282–5286. [PMC free article] [PubMed]
  • Drozański W. Structure of the rigid-layer of Rhizobium cell wall. III. Electron microscopic evidence for the cellulose microfibrils association with peptidoglycan sacculi. Acta Microbiol Pol. 1983;32(2):161–167. [PubMed]
  • Frederick CA, Coll M, van der Marel GA, van Boom JH, Wang AH. Molecular structure of cyclic deoxydiadenylic acid at atomic resolution. Biochemistry. 1988 Nov 1;27(22):8350–8361. [PubMed]
  • FUKASAWA T, JOKURA K, KURAHASHI K. MUTATIONS IN ESCHERICHIA COLI THAT AFFECT URIDINE DIPHOSPHATE GLUCOSE PYROPHOSPHORYLASE ACTIVITY AND GALACTOSE FERMENTATION. Biochim Biophys Acta. 1963 Sep 10;74:608–620. [PubMed]
  • GLASER L. The synthesis of cellulose in cell-free extracts of Acetobacter xylinum. J Biol Chem. 1958 Jun;232(2):627–636. [PubMed]
  • Gretz MR, Folsom DB, Brown RM., Jr Cellulose biogenesis in bacteria and higher plants is disrupted by magnetic fields. Naturwissenschaften. 1989 Aug;76(8):380–383. [PubMed]
  • GROMET Z, SCHRAMM M, HESTRIN S. Synthesis of cellulose by Acetobacter Xylinum. 4. Enzyme systems present in a crude extract of glucose-grown cells. Biochem J. 1957 Dec;67(4):679–689. [PMC free article] [PubMed]
  • Haigler CH, Brown RM, Jr, Benziman M. Calcofluor white ST Alters the in vivo assembly of cellulose microfibrils. Science. 1980 Nov 21;210(4472):903–906. [PubMed]
  • Halverson LJ, Stacey G. Signal exchange in plant-microbe interactions. Microbiol Rev. 1986 Jun;50(2):193–225. [PMC free article] [PubMed]
  • Harding NE, Cleary JM, Cabañas DK, Rosen IG, Kang KS. Genetic and physical analyses of a cluster of genes essential for xanthan gum biosynthesis in Xanthomonas campestris. J Bacteriol. 1987 Jun;169(6):2854–2861. [PMC free article] [PubMed]
  • Hayashi T, Read SM, Bussell J, Thelen M, Lin FC, Brown RM, Delmer DP. UDP-Glucose: (1-->3)-beta-Glucan Synthases from Mung Bean and Cotton: Differential Effects of Ca and Mg on Enzyme Properties and on Macromolecular Structure of the Glucan Product. Plant Physiol. 1987 Apr;83(4):1054–1062. [PMC free article] [PubMed]
  • Heberlein GT, De Ley J, Tijtgat R. Deoxyribonucleic acid homology and taxonomy of Agrobacterium, Rhizobium, and Chromobacterium. J Bacteriol. 1967 Jul;94(1):116–124. [PMC free article] [PubMed]
  • HESTRIN S, SCHRAMM M. Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J. 1954 Oct;58(2):345–352. [PMC free article] [PubMed]
  • Holt SC, Canale-Parola E. Fine structure of Sarcina maxima and Sarcina ventriculi. J Bacteriol. 1967 Jan;93(1):399–410. [PMC free article] [PubMed]
  • Kang MS, Elango N, Mattia E, Au-Young J, Robbins PW, Cabib E. Isolation of chitin synthetase from Saccharomyces cerevisiae. Purification of an enzyme by entrapment in the reaction product. J Biol Chem. 1984 Dec 10;259(23):14966–14972. [PubMed]
  • Kijne JW, Smit G, Díaz CL, Lugtenberg BJ. Lectin-enhanced accumulation of manganese-limited Rhizobium leguminosarum cells on pea root hair tips. J Bacteriol. 1988 Jul;170(7):2994–3000. [PMC free article] [PubMed]
  • Koreeda A, Harada T, Ogawa K, Sato S, Kasai N. Study of the ultrastructure of gel-forming (1 leads to 3)-beta-D-glucan (curdlan-type polysaccharide) by electron microscopy. Carbohydr Res. 1974 Apr;33(2):396–399. [PubMed]
  • Kornfeld S, Benziman M, Milner Y. Regulatory properties of the alpha-ketoglutarate dehydrogenase complex of Acetobacter xylinum. In situ studies and localization of the allosteric response in the E1 component. J Biol Chem. 1978 Aug 25;253(16):5678–5684. [PubMed]
  • Lin FC, Brown RM, Jr, Cooper JB, Delmer DP. Synthesis of Fibrils in Vitro by a Solubilized Cellulose Synthase from Acetobacter xylinum. Science. 1985 Nov 15;230(4727):822–825. [PubMed]
  • Lin FC, Brown RM, Jr, Drake RR, Jr, Haley BE. Identification of the uridine 5'-diphosphoglucose (UDP-Glc) binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc. J Biol Chem. 1990 Mar 25;265(9):4782–4784. [PubMed]
  • Lippincott JA, Lippincott BB. The genus Agrobacterium and plant tumorigenesis. Annu Rev Microbiol. 1975;29:377–405. [PubMed]
  • Masson L, Holbein BE. Role of lipid intermediate(s) in the synthesis of serogroup B Neisseria meningitidis capsular polysaccharide. J Bacteriol. 1985 Mar;161(3):861–867. [PMC free article] [PubMed]
  • Matthysse AG. Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. J Bacteriol. 1983 May;154(2):906–915. [PMC free article] [PubMed]
  • Matthysse AG. Initial interactions of Agrobacterium tumefaciens with plant host cells. Crit Rev Microbiol. 1986;13(3):281–307. [PubMed]
  • Matthysse AG, Holmes KV, Gurlitz RH. Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells. J Bacteriol. 1981 Jan;145(1):583–595. [PMC free article] [PubMed]
  • Mueller SC, Brown RM., Jr Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. J Cell Biol. 1980 Feb;84(2):315–326. [PMC free article] [PubMed]
  • Napoli C, Dazzo F, Hubbell D. Production of cellulose microfibrils by Rhizobium. Appl Microbiol. 1975 Jul;30(1):123–131. [PMC free article] [PubMed]
  • Preiss J. Bacterial glycogen synthesis and its regulation. Annu Rev Microbiol. 1984;38:419–458. [PubMed]
  • PRESTON RD. STRUCTURAL PLANT POLYSACCHARIDES. Endeavour. 1964 Sep;23:153–159. [PubMed]
  • Randall LL, Hardy SJ, Thom JR. Export of protein: a biochemical view. Annu Rev Microbiol. 1987;41:507–541. [PubMed]
  • Robertson JL, Holliday T, Matthysse AG. Mapping of Agrobacterium tumefaciens chromosomal genes affecting cellulose synthesis and bacterial attachment to host cells. J Bacteriol. 1988 Mar;170(3):1408–1411. [PMC free article] [PubMed]
  • Ross P, Mayer R, Weinhouse H, Amikam D, Huggirat Y, Benziman M, de Vroom E, Fidder A, de Paus P, Sliedregt LA, et al. The cyclic diguanylic acid regulatory system of cellulose synthesis in Acetobacter xylinum. Chemical synthesis and biological activity of cyclic nucleotide dimer, trimer, and phosphothioate derivatives. J Biol Chem. 1990 Nov 5;265(31):18933–18943. [PubMed]
  • Sandermann H, Jr, Dekker RF. Beta-1,2-glucosyl transfer by membrane preparations from Acetobacter xylinum. FEBS Lett. 1979 Nov 1;107(1):237–240. [PubMed]
  • SCHRAMM M, GROMET Z, HESTRIN S. Synthesis of cellulose by Acetobacter Xylinum. 3. Substrates and inhibitors. Biochem J. 1957 Dec;67(4):669–679. [PMC free article] [PubMed]
  • SCHRAMM M, HESTRIN S. Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol. 1954 Aug;11(1):123–129. [PubMed]
  • SCHRAMM M, KLYBAS V, RACKER E. Phosphorolytic cleavage of fructose-6-phosphate by fructose-6-phosphate phosphoketolase from Acetobacter xylinum. J Biol Chem. 1958 Dec;233(6):1283–1288. [PubMed]
  • Shematek EM, Braatz JA, Cabib E. Biosynthesis of the yeast cell wall. I. Preparation and properties of beta-(1 leads to 3)glucan synthetase. J Biol Chem. 1980 Feb 10;255(3):888–894. [PubMed]
  • Smit G, Kijne JW, Lugtenberg BJ. Correlation between extracellular fibrils and attachment of Rhizobium leguminosarum to pea root hair tips. J Bacteriol. 1986 Nov;168(2):821–827. [PMC free article] [PubMed]
  • Smit G, Kijne JW, Lugtenberg BJ. Involvement of both cellulose fibrils and a Ca2+-dependent adhesin in the attachment of Rhizobium leguminosarum to pea root hair tips. J Bacteriol. 1987 Sep;169(9):4294–4301. [PMC free article] [PubMed]
  • Smit G, Kijne JW, Lugtenberg BJ. Roles of flagella, lipopolysaccharide, and a Ca2+-dependent cell surface protein in attachment of Rhizobium leguminosarum biovar viciae to pea root hair tips. J Bacteriol. 1989 Jan;171(1):569–572. [PMC free article] [PubMed]
  • Smit G, Logman TJ, Boerrigter ME, Kijne JW, Lugtenberg BJ. Purification and partial characterization of the Rhizobium leguminosarum biovar viciae Ca2+-dependent adhesin, which mediates the first step in attachment of cells of the family Rhizobiaceae to plant root hair tips. J Bacteriol. 1989 Jul;171(7):4054–4062. [PMC free article] [PubMed]
  • Stowers MD. Carbon metabolism in Rhizobium species. Annu Rev Microbiol. 1985;39:89–108. [PubMed]
  • Sutherland IW. Bacterial surface polysaccharides: structure and function. Int Rev Cytol. 1988;113:187–231. [PubMed]
  • Swissa M, Aloni Y, Weinhouse H, Benizman M. Intermediatry steps in Acetobacter xylinum cellulose synthesis: studies with whole cells and cell-free preparations of the wild type and a celluloseless mutant. J Bacteriol. 1980 Sep;143(3):1142–1150. [PMC free article] [PubMed]
  • Swissa M, Benziman M. Factors affecting the activity of citrate synthase of Acetobacter xylinum and its possible regulatory role. Biochem J. 1976 Feb 1;153(2):173–179. [PMC free article] [PubMed]
  • Swissa M, Weinhouse H, Benziman M. Activities of citrate synthase and other enzymes of Acetobacter xylinum in situ and in vitro. Biochem J. 1976 Feb 1;153(2):499–501. [PMC free article] [PubMed]
  • Thelen MP, Delmer DP. Gel-Electrophoretic Separation, Detection, and Characterization of Plant and Bacterial UDP-Glucose Glucosyltransferases. Plant Physiol. 1986 Jul;81(3):913–918. [PMC free article] [PubMed]
  • Troy FA, McCloskey MA. Role of a membranous sialyltransferase complex in the synthesis of surface polymers containing polysialic acid in Escherichia coli. Temperature-induced alteration in the assembly process. J Biol Chem. 1979 Aug 10;254(15):7377–7387. [PubMed]
  • Troy FA, Vijay IK, Tesche N. Role of undecaprenyl phosphate in synthesis of polymers containing sialic acid in Escherichia coli. J Biol Chem. 1975 Jan 10;250(1):156–163. [PubMed]
  • Valla S, Coucheron DH, Fjaervik E, Kjosbakken J, Weinhouse H, Ross P, Amikam D, Benziman M. Cloning of a gene involved in cellulose biosynthesis in Acetobacter xylinum: complementation of cellulose-negative mutants by the UDPG pyrophosphorylase structural gene. Mol Gen Genet. 1989 May;217(1):26–30. [PubMed]
  • Valla S, Kjosbakken J. Isolation and characterization of a new extracellular polysaccharide from a cellulose-negative strain of Acetobacter xylinum. Can J Microbiol. 1981 Jun;27(6):599–603. [PubMed]
  • Waechter CJ, Lennarz WJ. The role of polyprenol-linked sugars in glycoprotein synthesis. Annu Rev Biochem. 1976;45:95–112. [PubMed]
  • Webb TE, Colvin JR. The extracellular proteins of Acetobacter xylinum and their relationship to cellulose synthesis. Can J Biochem. 1967 Apr;45(4):465–476. [PubMed]
  • Weinhouse H, Benziman M. Regulation of gluconeogenesis in Acetobacter xylinum. Eur J Biochem. 1972 Jun 23;28(1):83–88. [PubMed]
  • Weinhouse H, Benziman M. Regulation of hexose phosphate metabolism in Acetobacter xylinum. Biochem J. 1974 Mar;138(3):537–542. [PMC free article] [PubMed]
  • Weinhouse H, Benziman M. Phosphorylation of glycerol and dihydroxyacetone in Acetobacter xylinum and its possible regulatory role. J Bacteriol. 1976 Aug;127(2):747–754. [PMC free article] [PubMed]
  • Whitfield C. Bacterial extracellular polysaccharides. Can J Microbiol. 1988 Apr;34(4):415–420. [PubMed]
  • Whitfield C, Adams DA, Troy FA. Biosynthesis and assembly of the polysialic acid capsule in Escherichia coli K1. Role of a low-density vesicle fraction in activation of the endogenous synthesis of sialyl polymers. J Biol Chem. 1984 Oct 25;259(20):12769–12775. [PubMed]
  • Williams WS, Cannon RE. Alternative Environmental Roles for Cellulose Produced by Acetobacter xylinum. Appl Environ Microbiol. 1989 Oct;55(10):2448–2452. [PMC free article] [PubMed]
  • Wong HC, Fear AL, Calhoon RD, Eichinger GH, Mayer R, Amikam D, Benziman M, Gelfand DH, Meade JH, Emerick AW, et al. Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc Natl Acad Sci U S A. 1990 Oct;87(20):8130–8134. [PMC free article] [PubMed]
  • Zaar K. Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum. J Cell Biol. 1979 Mar;80(3):773–777. [PMC free article] [PubMed]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Conserved Domains
    Conserved Domains
    Link to related CDD entry
  • MedGen
    MedGen
    Related information in MedGen
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links
  • Taxonomy
    Taxonomy
    Related taxonomy entry
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...