Logo of microrevMicrobiol Mol Biol Rev ArchivePermissionsJournals.ASM.orgMMBR ArticleJournal InfoAuthorsReviewers
Microbiol Rev. 1990 Jun; 54(2): 198–210.
PMCID: PMC372768

Codon preferences in free-living microorganisms.


A popular interpretation of the major codon preference is that it reflects the operation of a regulatory device that controls the expression of individual proteins. In this popular model, rapidly translated codons are thought to promote the accumulation of the highly expressed proteins and slowly translated codons are thought to retard the expression of poorly expressed proteins. However, this widely accepted model is not supported by kinetic theory or by experimental results. A less fashionable model in which the major codon preference has nothing to do with the expression level of the individual proteins is forwarded. In this model, the major codon preference is viewed as a global strategy to support the efficient function of the translation system and thereby to maximize the growth rates of cells under favorable conditions.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.8M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Andersson DI, van Verseveld HW, Stouthamer AH, Kurland CG. Suboptimal growth with hyper-accurate ribosomes. Arch Microbiol. 1986 Feb;144(1):96–101. [PubMed]
  • Andersson SG, Buckingham RH, Kurland CG. Does codon composition influence ribosome function? EMBO J. 1984 Jan;3(1):91–94. [PMC free article] [PubMed]
  • Aota S, Ikemura T. Diversity in G + C content at the third position of codons in vertebrate genes and its cause. Nucleic Acids Res. 1986 Aug 26;14(16):6345–6355. [PMC free article] [PubMed]
  • Attardi G. Animal mitochondrial DNA: an extreme example of genetic economy. Int Rev Cytol. 1985;93:93–145. [PubMed]
  • Bennetzen JL, Hall BD. Codon selection in yeast. J Biol Chem. 1982 Mar 25;257(6):3026–3031. [PubMed]
  • Bernardi G, Bernardi G. Codon usage and genome composition. J Mol Evol. 1985;22(4):363–365. [PubMed]
  • Bernardi G, Bernardi G. Compositional constraints and genome evolution. J Mol Evol. 1986;24(1-2):1–11. [PubMed]
  • Bernardi G, Olofsson B, Filipski J, Zerial M, Salinas J, Cuny G, Meunier-Rotival M, Rodier F. The mosaic genome of warm-blooded vertebrates. Science. 1985 May 24;228(4702):953–958. [PubMed]
  • Bilgin N, Ehrenberg M, Kurland C. Is translation inhibited by noncognate ternary complexes? FEBS Lett. 1988 Jun 6;233(1):95–99. [PubMed]
  • Bilgin N, Kirsebom LA, Ehrenberg M, Kurland CG. Mutations in ribosomal proteins L7/L12 perturb EF-G and EF-Tu functions. Biochimie. 1988 May;70(5):611–618. [PubMed]
  • Bonekamp F, Andersen HD, Christensen T, Jensen KF. Codon-defined ribosomal pausing in Escherichia coli detected by using the pyrE attenuator to probe the coupling between transcription and translation. Nucleic Acids Res. 1985 Jun 11;13(11):4113–4123. [PMC free article] [PubMed]
  • Bonekamp F, Dalbøge H, Christensen T, Jensen KF. Translation rates of individual codons are not correlated with tRNA abundances or with frequencies of utilization in Escherichia coli. J Bacteriol. 1989 Nov;171(11):5812–5816. [PMC free article] [PubMed]
  • Bonekamp F, Jensen KF. The AGG codon is translated slowly in E. coli even at very low expression levels. Nucleic Acids Res. 1988 Apr 11;16(7):3013–3024. [PMC free article] [PubMed]
  • Bouadloun F, Donner D, Kurland CG. Codon-specific missense errors in vivo. EMBO J. 1983;2(8):1351–1356. [PMC free article] [PubMed]
  • Breton R, Sanfaçon H, Papayannopoulos I, Biemann K, Lapointe J. Glutamyl-tRNA synthetase of Escherichia coli. Isolation and primary structure of the gltX gene and homology with other aminoacyl-tRNA synthetases. J Biol Chem. 1986 Aug 15;261(23):10610–10617. [PubMed]
  • Brown WM, George M, Jr, Wilson AC. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1967–1971. [PMC free article] [PubMed]
  • Bulmer M. Coevolution of codon usage and transfer RNA abundance. Nature. 1987 Feb 19;325(6106):728–730. [PubMed]
  • Bulmer M. Codon usage and intragenic position. J Theor Biol. 1988 Jul 8;133(1):67–71. [PubMed]
  • Burns DM, Beacham IR. Rare codons in E. coli and S. typhimurium signal sequences. FEBS Lett. 1985 Sep 23;189(2):318–324. [PubMed]
  • Chavancy G, Garel JP. Does quantitative tRNA adaptation to codon content in mRNA optimize the ribosomal translation efficiency? Proposal for a translation system model. Biochimie. 1981 Mar;63(3):187–195. [PubMed]
  • Craigen WJ, Caskey CT. Expression of peptide chain release factor 2 requires high-efficiency frameshift. Nature. 1986 Jul 17;322(6076):273–275. [PubMed]
  • Craigen WJ, Cook RG, Tate WP, Caskey CT. Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3616–3620. [PMC free article] [PubMed]
  • Crick FH. The origin of the genetic code. J Mol Biol. 1968 Dec;38(3):367–379. [PubMed]
  • Crick FH, Brenner S, Klug A, Pieczenik G. A speculation on the origin of protein synthesis. Orig Life. 1976 Dec;7(4):389–397. [PubMed]
  • Curran JF, Yarus M. Use of tRNA suppressors to probe regulation of Escherichia coli release factor 2. J Mol Biol. 1988 Sep 5;203(1):75–83. [PubMed]
  • Curran JF, Yarus M. Rates of aminoacyl-tRNA selection at 29 sense codons in vivo. J Mol Biol. 1989 Sep 5;209(1):65–77. [PubMed]
  • Dean AM, Dykhuizen DE, Hartl DL. Fitness effects of amino acid replacements in the beta-galactosidase of Escherichia coli. Mol Biol Evol. 1988 Sep;5(5):469–485. [PubMed]
  • Ehrenberg M, Kurland CG. Costs of accuracy determined by a maximal growth rate constraint. Q Rev Biophys. 1984 Feb;17(1):45–82. [PubMed]
  • Eigen M, Winkler-Oswatitsch R. Transfer-RNA, an early gene? Naturwissenschaften. 1981 Jun;68(6):282–292. [PubMed]
  • Fast R, Eberhard TH, Ruusala T, Kurland CG. Does streptomycin cause an error catastrophe? Biochimie. 1987 Feb;69(2):131–136. [PubMed]
  • Fox TD. Natural variation in the genetic code. Annu Rev Genet. 1987;21:67–91. [PubMed]
  • Garel JP. Functional adaptation of tRNA population. J Theor Biol. 1974 Jan;43(1):211–225. [PubMed]
  • Gouy M, Gautier C. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 1982 Nov 25;10(22):7055–7074. [PMC free article] [PubMed]
  • Grantham R, Gautier C, Gouy M. Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type. Nucleic Acids Res. 1980 May 10;8(9):1893–1912. [PMC free article] [PubMed]
  • Grantham R, Gautier C, Gouy M, Jacobzone M, Mercier R. Codon catalog usage is a genome strategy modulated for gene expressivity. Nucleic Acids Res. 1981 Jan 10;9(1):r43–r74. [PMC free article] [PubMed]
  • Green GA, Jones DS. The nucleotide sequence of a cytoplasmic tRNAPhe from Scenedesmus obliquus and comparison with a tRNATyr species. Biochem J. 1986 Jun 1;236(2):601–603. [PMC free article] [PubMed]
  • Grivell LA. Molecular evolution. Deciphering divergent codes. Nature. 1986 Nov 13;324(6093):109–110. [PubMed]
  • Grosjean HJ, de Henau S, Crothers DM. On the physical basis for ambiguity in genetic coding interactions. Proc Natl Acad Sci U S A. 1978 Feb;75(2):610–614. [PMC free article] [PubMed]
  • Grosjean H, Fiers W. Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene. 1982 Jun;18(3):199–209. [PubMed]
  • Grosjean H, Sankoff D, Jou WM, Fiers W, Cedergren RJ. Bacteriophage MS2 RNA: a correlation between the stability of the codon: anticodon interaction and the choice of code words. J Mol Evol. 1978 Dec 29;12(2):113–119. [PubMed]
  • Hinds PW, Blake RD. Delineation of coding areas in DNA sequences through assignment of codon probabilities. J Biomol Struct Dyn. 1985 Dec;3(3):543–549. [PubMed]
  • Hoekema A, Kastelein RA, Vasser M, de Boer HA. Codon replacement in the PGK1 gene of Saccharomyces cerevisiae: experimental approach to study the role of biased codon usage in gene expression. Mol Cell Biol. 1987 Aug;7(8):2914–2924. [PMC free article] [PubMed]
  • Holm L. Codon usage and gene expression. Nucleic Acids Res. 1986 Apr 11;14(7):3075–3087. [PMC free article] [PubMed]
  • Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol. 1981 Feb 15;146(1):1–21. [PubMed]
  • Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J Mol Biol. 1981 Sep 25;151(3):389–409. [PubMed]
  • Ikemura T. Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. J Mol Biol. 1982 Jul 15;158(4):573–597. [PubMed]
  • Ikemura T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol. 1985 Jan;2(1):13–34. [PubMed]
  • Ikemura T, Ozeki H. Codon usage and transfer RNA contents: organism-specific codon-choice patterns in reference to the isoacceptor contents. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 2):1087–1097. [PubMed]
  • Jukes TH, Osawa S, Muto A. Divergence and directional mutation pressures. Nature. 1987 Feb 19;325(6106):668–668. [PubMed]
  • Kniskern PJ, Hagopian A, Montgomery DL, Burke P, Dunn NR, Hofmann KJ, Miller WJ, Ellis RW. Unusually high-level expression of a foreign gene (hepatitis B virus core antigen) in Saccharomyces cerevisiae. Gene. 1986;46(1):135–141. [PubMed]
  • Konigsberg W, Godson GN. Evidence for use of rare codons in the dnaG gene and other regulatory genes of Escherichia coli. Proc Natl Acad Sci U S A. 1983 Feb;80(3):687–691. [PMC free article] [PubMed]
  • Lacey JC, Jr, Mullins DW., Jr Experimental studies related to the origin of the genetic code and the process of protein synthesis--a review. Orig Life. 1983 Mar;13(1):3–42. [PubMed]
  • Lehman N, Jukes TH. Genetic code development by stop codon takeover. J Theor Biol. 1988 Nov 21;135(2):203–214. [PubMed]
  • Liljenström H, von Heijne G. Translation rate modification by preferential codon usage: intragenic position effects. J Theor Biol. 1987 Jan 7;124(1):43–55. [PubMed]
  • McPherson DT. Codon preference reflects mistranslational constraints: a proposal. Nucleic Acids Res. 1988 May 11;16(9):4111–4120. [PMC free article] [PubMed]
  • Mikelsaar R. A view of early cellular evolution. J Mol Evol. 1987;25(2):168–183. [PubMed]
  • Miller SL. Current status of the prebiotic synthesis of small molecules. Chem Scr. 1986;26B:5–11. [PubMed]
  • Muto A, Osawa S. The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci U S A. 1987 Jan;84(1):166–169. [PMC free article] [PubMed]
  • Muto A, Yamao F, Hori H, Osawa S. Gene organization of Mycoplasma capricolum. Adv Biophys. 1986;21:49–56. [PubMed]
  • Nagyvary J, Fendler JH. Origin of the genetic code: a physical-chemical model of primitive codon assignments. Orig Life. 1974 Jul-Oct;5(3):357–362. [PubMed]
  • Ogasawara N. Markedly unbiased codon usage in Bacillus subtilis. Gene. 1985;40(1):145–150. [PubMed]
  • Ohama T, Yamao F, Muto A, Osawa S. Organization and codon usage of the streptomycin operon in Micrococcus luteus, a bacterium with a high genomic G + C content. J Bacteriol. 1987 Oct;169(10):4770–4777. [PMC free article] [PubMed]
  • Osawa S, Jukes TH. Evolution of the genetic code as affected by anticodon content. Trends Genet. 1988 Jul;4(7):191–198. [PubMed]
  • Osawa S, Jukes TH. Codon reassignment (codon capture) in evolution. J Mol Evol. 1989 Apr;28(4):271–278. [PubMed]
  • Osawa S, Ohama T, Jukes TH, Watanabe K. Evolution of the mitochondrial genetic code. I. Origin of AGR serine and stop codons in metazoan mitochondria. J Mol Evol. 1989 Sep;29(3):202–207. [PubMed]
  • Osawa S, Ohama T, Jukes TH, Watanabe K, Yokoyama S. Evolution of the mitochondrial genetic code. II. Reassignment of codon AUA from isoleucine to methionine. J Mol Evol. 1989 Nov;29(5):373–380. [PubMed]
  • Parker J. Errors and alternatives in reading the universal genetic code. Microbiol Rev. 1989 Sep;53(3):273–298. [PMC free article] [PubMed]
  • Pedersen S. Escherichia coli ribosomes translate in vivo with variable rate. EMBO J. 1984 Dec 1;3(12):2895–2898. [PMC free article] [PubMed]
  • Purvis IJ, Bettany AJ, Santiago TC, Coggins JR, Duncan K, Eason R, Brown AJ. The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. A hypothesis. J Mol Biol. 1987 Jan 20;193(2):413–417. [PubMed]
  • Randall LL, Josefsson LG, Hardy SJ. Novel intermediates in the synthesis of maltose-binding protein in Escherichia coli. Eur J Biochem. 1980 Jun;107(2):375–379. [PubMed]
  • Robinson M, Lilley R, Little S, Emtage JS, Yarranton G, Stephens P, Millican A, Eaton M, Humphreys G. Codon usage can affect efficiency of translation of genes in Escherichia coli. Nucleic Acids Res. 1984 Sep 11;12(17):6663–6671. [PMC free article] [PubMed]
  • Sharp PM, Li WH. An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol. 1986;24(1-2):28–38. [PubMed]
  • Sharp PM, Li WH. Codon usage in regulatory genes in Escherichia coli does not reflect selection for 'rare' codons. Nucleic Acids Res. 1986 Oct 10;14(19):7737–7749. [PMC free article] [PubMed]
  • Sharp PM, Li WH. The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol. 1987 May;4(3):222–230. [PubMed]
  • Sharp PM, Tuohy TM, Mosurski KR. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. 1986 Jul 11;14(13):5125–5143. [PMC free article] [PubMed]
  • Shields DC, Sharp PM. Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res. 1987 Oct 12;15(19):8023–8040. [PMC free article] [PubMed]
  • Sørensen MA, Kurland CG, Pedersen S. Codon usage determines translation rate in Escherichia coli. J Mol Biol. 1989 May 20;207(2):365–377. [PubMed]
  • Spanjaard RA, van Duin J. Translation of the sequence AGG-AGG yields 50% ribosomal frameshift. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7967–7971. [PMC free article] [PubMed]
  • Trifonov EN. Translation framing code and frame-monitoring mechanism as suggested by the analysis of mRNA and 16 S rRNA nucleotide sequences. J Mol Biol. 1987 Apr 20;194(4):643–652. [PubMed]
  • Walker JE, Saraste M, Gay NJ. The unc operon. Nucleotide sequence, regulation and structure of ATP-synthase. Biochim Biophys Acta. 1984 Sep 6;768(2):164–200. [PubMed]
  • Varenne S, Buc J, Lloubes R, Lazdunski C. Translation is a non-uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J Mol Biol. 1984 Dec 15;180(3):549–576. [PubMed]
  • Varenne S, Lazdunski C. Effect of distribution of unfavourable codons on the maximum rate of gene expression by an heterologous organism. J Theor Biol. 1986 May 7;120(1):99–110. [PubMed]
  • Weiss RB, Dunn DM, Dahlberg AE, Atkins JF, Gesteland RF. Reading frame switch caused by base-pair formation between the 3' end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli. EMBO J. 1988 May;7(5):1503–1507. [PMC free article] [PubMed]
  • Wek RC, Hauser CA, Hatfield GW. The nucleotide sequence of the ilvBN operon of Escherichia coli: sequence homologies of the acetohydroxy acid synthase isozymes. Nucleic Acids Res. 1985 Jun 11;13(11):3995–4010. [PMC free article] [PubMed]
  • Woese CR. On the evolution of the genetic code. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1546–1552. [PMC free article] [PubMed]
  • Wong JT. Evolution of the genetic code. Microbiol Sci. 1988 Jun;5(6):174–181. [PubMed]
  • Wong JT, Cedergren R. Natural selection versus primitive gene structure as determinant of codon usage. Eur J Biochem. 1986 Aug 15;159(1):175–180. [PubMed]
  • Yarus M. A specific amino acid binding site composed of RNA. Science. 1988 Jun 24;240(4860):1751–1758. [PubMed]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...