• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of microrevMicrobiol Mol Biol Rev ArchivePermissionsJournals.ASM.orgMMBR ArticleJournal InfoAuthorsReviewers
Microbiol Rev. Mar 1989; 53(1): 148–170.
PMCID: PMC372721

Transformation in fungi.

Abstract

Transformation with exogenous deoxyribonucleic acid (DNA) now appears to be possible with all fungal species, or at least all that can be grown in culture. This field of research is at present dominated by Saccharomyces cerevisiae and two filamentous members of the class Ascomycetes, Aspergillus nidulans and Neurospora crassa, with substantial contributions also from fission yeast (Schizosaccharomyces pombe) and another filamentous member of the class Ascomycetes, Podospora anserina. However, transformation has been demonstrated, and will no doubt be extensively used, in representatives of most of the main fungal classes, including Phycomycetes, Basidiomycetes (the order Agaricales and Ustilago species), and a number of the Fungi Imperfecti. The list includes a number of plant pathogens, and transformation is likely to become important in the analysis of the molecular basis of pathogenicity. Transformation may be maintained either by using an autonomously replicating plasmid as a vehicle for the transforming DNA or through integration of the DNA into the chromosomes. In S. cerevisiae and other yeasts, a variety of autonomously replicating plasmids have been used successfully, some of them designed for use as shuttle vectors for Escherichia coli as well as for yeast transformation. Suitable plasmids are not yet available for use in filamentous fungi, in which stable transformation is dependent on chromosomal integration. In Saccharomyces cerevisiae, integration of transforming DNA is virtually always by homology; in filamentous fungi, in contrast, it occurs just as frequently at nonhomologous (ectopic) chromosomal sites. The main importance of transformation in fungi at present is in connection with gene cloning and the analysis of gene function. The most advanced work is being done with S. cerevisiae, in which the virtual restriction of stable DNA integration to homologous chromosome loci enables gene disruption and gene replacement to be carried out with greater precision and efficiency than is possible in other species that show a high proportion of DNA integration events at nonhomologous (ectopic) sites. With a little more trouble, however, the methodology pioneered for S. cerevisiae can be applied to other fungi too. Transformation of fungi with DNA constructs designed for high gene expression and efficient secretion of gene products appears to have great commercial potential.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (4.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Akins RA, Lambowitz AM. General method for cloning Neurospora crassa nuclear genes by complementation of mutants. Mol Cell Biol. 1985 Sep;5(9):2272–2278. [PMC free article] [PubMed]
  • Alani E, Cao L, Kleckner N. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics. 1987 Aug;116(4):541–545. [PMC free article] [PubMed]
  • Andreadis A, Hsu YP, Kohlhaw GB, Schimmel P. Nucleotide sequence of yeast LEU2 shows 5'-noncoding region has sequences cognate to leucine. Cell. 1982 Dec;31(2 Pt 1):319–325. [PubMed]
  • Andrianopoulos A, Hynes MJ. Cloning and analysis of the positively acting regulatory gene amdR from Aspergillus nidulans. Mol Cell Biol. 1988 Aug;8(8):3532–3541. [PMC free article] [PubMed]
  • Baldari C, Murray JA, Ghiara P, Cesareni G, Galeotti CL. A novel leader peptide which allows efficient secretion of a fragment of human interleukin 1 beta in Saccharomyces cerevisiae. EMBO J. 1987 Jan;6(1):229–234. [PMC free article] [PubMed]
  • Ballance DJ, Buxton FP, Turner G. Transformation of Aspergillus nidulans by the orotidine-5'-phosphate decarboxylase gene of Neurospora crassa. Biochem Biophys Res Commun. 1983 Apr 15;112(1):284–289. [PubMed]
  • Ballance DJ, Turner G. Development of a high-frequency transforming vector for Aspergillus nidulans. Gene. 1985;36(3):321–331. [PubMed]
  • Barnes DA, Thorner J. Genetic manipulation of Saccharomyces cerevisiae by use of the LYS2 gene. Mol Cell Biol. 1986 Aug;6(8):2828–2838. [PMC free article] [PubMed]
  • Barnes DE, MacDonald DW. Behaviour of recombinant plasmids in Aspergillus nidulans: structure and stability. Curr Genet. 1986;10(10):767–775. [PubMed]
  • Beggs JD. Transformation of yeast by a replicating hybrid plasmid. Nature. 1978 Sep 14;275(5676):104–109. [PubMed]
  • Bégueret J, Razanamparany V, Perrot M, Barreau C. Cloning gene ura5 for the orotidylic acid pyrophosphorylase of the filamentous fungus Podospora anserina: transformation of protoplasts. Gene. 1984 Dec;32(3):487–492. [PubMed]
  • Beri RK, Turner G. Transformation of Penicillium chrysogenum using the Aspergillus nidulans amdS gene as a dominant selective marker. Curr Genet. 1987;11(8):639–641. [PubMed]
  • Binninger DM, Skrzynia C, Pukkila PJ, Casselton LA. DNA-mediated transformation of the basidiomycete Coprinus cinereus. EMBO J. 1987 Apr;6(4):835–840. [PMC free article] [PubMed]
  • Bouton AH, Smith MM. Fine-structure analysis of the DNA sequence requirements for autonomous replication of Saccharomyces cerevisiae plasmids. Mol Cell Biol. 1986 Jul;6(7):2354–2363. [PMC free article] [PubMed]
  • Bull JH, Smith DJ, Turner G. Transformation of Penicillium chrysogenum with a dominant selectable marker. Curr Genet. 1988 May;13(5):377–382. [PubMed]
  • Bull JH, Wootton JC. Heavily methylated amplified DNA in transformants of Neurospora crassa. Nature. 1984 Aug 23;310(5979):701–704. [PubMed]
  • Buxton FP, Gwynne DI, Davies RW. Transformation of Aspergillus niger using the argB gene of Aspergillus nidulans. Gene. 1985;37(1-3):207–214. [PubMed]
  • Cameron JR, Loh EY, Davis RW. Evidence for transposition of dispersed repetitive DNA families in yeast. Cell. 1979 Apr;16(4):739–751. [PubMed]
  • Case ME. Genetical and molecular analyses of qa-2 transformants in Neurospora crassa. Genetics. 1986 Jul;113(3):569–587. [PMC free article] [PubMed]
  • Case ME, Schweizer M, Kushner SR, Giles NH. Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5259–5263. [PMC free article] [PubMed]
  • Chan CS, Tye BK. Autonomously replicating sequences in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6329–6333. [PMC free article] [PubMed]
  • Costanzo MC, Fox TD. Transformation of yeast by agitation with glass beads. Genetics. 1988 Nov;120(3):667–670. [PMC free article] [PubMed]
  • Das S, Kellermann E, Hollenberg CP. Transformation of Kluyveromyces fragilis. J Bacteriol. 1984 Jun;158(3):1165–1167. [PMC free article] [PubMed]
  • de Graaff L, van den Broek H, Visser J. Isolation and transformation of the pyruvate kinase gene of Aspergillus nidulans. Curr Genet. 1988 Apr;13(4):315–321. [PubMed]
  • Denis CL, Drouin EE. Meiotic instability of tandemly iterated plasmid sequences in the yeast chromosome. Curr Genet. 1987;12(6):399–403. [PubMed]
  • Dhawale SS, Marzluf GA. Transformation of Neurospora crassa with circular and linear DNA and analysis of the fate of the transforming DNA. Curr Genet. 1985;10(3):205–212. [PubMed]
  • Dunne PW, Oakley BR. Mitotic gene conversion, reciprocal recombination and gene replacement at the benA, beta-tubulin, locus of Aspergillus nidulans. Mol Gen Genet. 1988 Aug;213(2-3):339–345. [PubMed]
  • Durrens P, Green PM, Arst HN, Jr, Scazzocchio C. Heterologous insertion of transforming DNA and generation of new deletions associated with transformation in Aspergillus nidulans. Mol Gen Genet. 1986 Jun;203(3):544–549. [PubMed]
  • Fehér Z, Schablik M, Kiss A, Zsindely A, Szabó G. Characterization of inl+ transformants of Neurospora crassa obtained with a recombinant cosmid-pool. Curr Genet. 1986;11(2):131–137. [PubMed]
  • Froeliger EH, Muñoz-Rivas AM, Specht CA, Ullrich RC, Novotny CP. The isolation of specific genes from the basidiomycete Schizophyllum commune. Curr Genet. 1987;12(7):547–554. [PubMed]
  • Glass NL, Vollmer SJ, Staben C, Grotelueschen J, Metzenberg RL, Yanofsky C. DNAs of the two mating-type alleles of Neurospora crassa are highly dissimilar. Science. 1988 Jul 29;241(4865):570–573. [PubMed]
  • Goosen T, Bloemheuvel G, Gysler C, de Bie DA, van den Broek HW, Swart K. Transformation of Aspergillus niger using the homologous orotidine-5'-phosphate-decarboxylase gene. Curr Genet. 1987;11(6-7):499–503. [PubMed]
  • Grant DM, Lambowitz AM, Rambosek JA, Kinsey JA. Transformation of Neurospora crassa with recombinant plasmids containing the cloned glutamate dehydrogenase (am) gene: evidence for autonomous replication of the transforming plasmid. Mol Cell Biol. 1984 Oct;4(10):2041–2051. [PMC free article] [PubMed]
  • Grinius L. Nucleic acid transport driven by ion gradient across cell membrane. FEBS Lett. 1980 Apr 21;113(1):1–10. [PubMed]
  • Heinisch J. Construction and physiological characterization of mutants disrupted in the phosphofructokinase genes of Saccharomyces cerevisiae. Curr Genet. 1986;11(3):227–234. [PubMed]
  • Hieter P, Pridmore D, Hegemann JH, Thomas M, Davis RW, Philippsen P. Functional selection and analysis of yeast centromeric DNA. Cell. 1985 Oct;42(3):913–921. [PubMed]
  • Hicks JB, Hinnen A, Fink GR. Properties of yeast transformation. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):1305–1313. [PubMed]
  • Hinnen A, Hicks JB, Fink GR. Transformation of yeast. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1929–1933. [PMC free article] [PubMed]
  • Hohmann S. A region in the yeast genome which favours multiple integration of DNA via homologous recombination. Curr Genet. 1987;12(7):519–526. [PubMed]
  • Hsiao CL, Carbon J. High-frequency transformation of yeast by plasmids containing the cloned yeast ARG4 gene. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3829–3833. [PMC free article] [PubMed]
  • Hsiao CL, Carbon J. Characterization of a yeast replication origin (ars2) and construction of stable minichromosomes containing cloned yeast centromere DNA (CEN3). Gene. 1981 Nov;15(2-3):157–166. [PubMed]
  • Hughes K, Case ME, Geever R, Vapnek D, Giles NH. Chimeric plasmid that replicates autonomously in both Escherichia coli and Neurospora crassa. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1053–1057. [PMC free article] [PubMed]
  • Hutchison HT, Hartwell LH. Macromolecule synthesis in yeast spheroplasts. J Bacteriol. 1967 Nov;94(5):1697–1705. [PMC free article] [PubMed]
  • Innis MA, Holland MJ, McCabe PC, Cole GE, Wittman VP, Tal R, Watt KW, Gelfand DH, Holland JP, Meade JH. Expression, Glycosylation, and Secretion of an Aspergillus Glucoamylase by Saccharomyces cerevisiae. Science. 1985 Apr 5;228(4695):21–26. [PubMed]
  • Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. [PMC free article] [PubMed]
  • Johnstone IL, Hughes SG, Clutterbuck AJ. Cloning an Aspergillus nidulans developmental gene by transformation. EMBO J. 1985 May;4(5):1307–1311. [PMC free article] [PubMed]
  • Kearsey S. Analysis of sequences conferring autonomous replication in baker's yeast. EMBO J. 1983;2(9):1571–1575. [PMC free article] [PubMed]
  • Kelly JM, Hynes MJ. Multiple copies of the amdS gene of Aspergillus nidulans cause titration of trans-acting regulatory proteins. Curr Genet. 1987;12(1):21–31. [PubMed]
  • Keszenman-Pereyra D, Hieda K. A colony procedure for transformation of Saccharomyces cerevisiae. Curr Genet. 1988;13(1):21–23. [PubMed]
  • Kim SY, Marzluf GA. Transformation of Neurospora crassa with the trp-1 gene and the effect of host strain upon the fate of the transforming DNA. Curr Genet. 1988;13(1):65–70. [PubMed]
  • Kinnaird JH, Keighren MA, Kinsey JA, Eaton M, Fincham JR. Cloning of the am (glutamate dehydrogenase) gene of Neurospora crassa through the use of a synthetic DNA probe. Gene. 1982 Dec;20(3):387–396. [PubMed]
  • Kinsey JA, Rambosek JA. Transformation of Neurospora crassa with the cloned am (glutamate dehydrogenase) gene. Mol Cell Biol. 1984 Jan;4(1):117–122. [PMC free article] [PubMed]
  • Klein HL. Lack of association between intrachromosomal gene conversion and reciprocal exchange. Nature. 310(5980):748–753. [PubMed]
  • Kunes S, Botstein D, Fox MS. Transformation of yeast with linearized plasmid DNA. Formation of inverted dimers and recombinant plasmid products. J Mol Biol. 1985 Aug 5;184(3):375–387. [PubMed]
  • Mattern IE, Unkles S, Kinghorn JR, Pouwels PH, van den Hondel CA. Transformation of Aspergillus oryzae using the A. niger pyrG gene. Mol Gen Genet. 1987 Dec;210(3):460–461. [PubMed]
  • Maundrell K, Wright AP, Piper M, Shall S. Evaluation of heterologous ARS activity in S. cerevisiae using cloned DNA from S. pombe. Nucleic Acids Res. 1985 May 24;13(10):3711–3722. [PMC free article] [PubMed]
  • Meselson MS, Radding CM. A general model for genetic recombination. Proc Natl Acad Sci U S A. 1975 Jan;72(1):358–361. [PMC free article] [PubMed]
  • Miller BL, Miller KY, Timberlake WE. Direct and indirect gene replacements in Aspergillus nidulans. Mol Cell Biol. 1985 Jul;5(7):1714–1721. [PMC free article] [PubMed]
  • Mishra NC. Characterization of the new osmotic mutants (os) which originated during genetic transformation in Neurospora crassa. Genet Res. 1977 Feb;29(1):9–19. [PubMed]
  • Mishra NC. DNA-mediated genetic changes in Neurospora crassa. J Gen Microbiol. 1979 Aug;113(2):255–259. [PubMed]
  • Mishra NC, Tatum EL. Non-Mendelian inheritance of DNA-induced inositol independence in Neurospora. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3875–3879. [PMC free article] [PubMed]
  • Munoz-Rivas A, Specht CA, Drummond BJ, Froeliger E, Novotny CP, Ullrich RC. Transformation of the basidiomycete, Schizophyllum commune. Mol Gen Genet. 1986 Oct;205(1):103–106. [PubMed]
  • Murray AW, Schultes NP, Szostak JW. Chromosome length controls mitotic chromosome segregation in yeast. Cell. 1986 May 23;45(4):529–536. [PubMed]
  • Murray AW, Szostak JW. Pedigree analysis of plasmid segregation in yeast. Cell. 1983 Oct;34(3):961–970. [PubMed]
  • Murray AW, Szostak JW. Construction of artificial chromosomes in yeast. Nature. 1983 Sep 15;305(5931):189–193. [PubMed]
  • Murray AW, Szostak JW. Construction and behavior of circularly permuted and telocentric chromosomes in Saccharomyces cerevisiae. Mol Cell Biol. 1986 Sep;6(9):3166–3172. [PMC free article] [PubMed]
  • Orbach MJ, Porro EB, Yanofsky C. Cloning and characterization of the gene for beta-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker. Mol Cell Biol. 1986 Jul;6(7):2452–2461. [PMC free article] [PubMed]
  • Orr-Weaver TL, Szostak JW. Yeast recombination: the association between double-strand gap repair and crossing-over. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4417–4421. [PMC free article] [PubMed]
  • Orr-Weaver TL, Szostak JW. Multiple, tandem plasmid integration in Saccharomyces cerevisiae. Mol Cell Biol. 1983 Apr;3(4):747–749. [PMC free article] [PubMed]
  • Orr-Weaver TL, Szostak JW. Fungal recombination. Microbiol Rev. 1985 Mar;49(1):33–58. [PMC free article] [PubMed]
  • Orr-Weaver TL, Szostak JW, Rothstein RJ. Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6354–6358. [PMC free article] [PubMed]
  • Paietta J, Marzluf GA. Plasmid recovery from transformants and the isolation of chromosomal DNA segments improving plasmid replication in Neurospora crassa. Curr Genet. 1985;9(5):383–388. [PubMed]
  • Paietta JV, Marzluf GA. Gene disruption by transformation in Neurospora crassa. Mol Cell Biol. 1985 Jul;5(7):1554–1559. [PMC free article] [PubMed]
  • Parker R, Simmons T, Shuster EO, Siliciano PG, Guthrie C. Genetic analysis of small nuclear RNAs in Saccharomyces cerevisiae: viable sextuple mutant. Mol Cell Biol. 1988 Aug;8(8):3150–3159. [PMC free article] [PubMed]
  • Parsons KA, Chumley FG, Valent B. Genetic transformation of the fungal pathogen responsible for rice blast disease. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4161–4165. [PMC free article] [PubMed]
  • Perrot M, Barreau C, Bégueret J. Nonintegrative transformation in the filamentous fungus Podospora anserina: stabilization of a linear vector by the chromosomal ends of Tetrahymena thermophila. Mol Cell Biol. 1987 May;7(5):1725–1730. [PMC free article] [PubMed]
  • Radford A, Pope S, Sazci A, Fraser MJ, Parish JH. Liposome-mediated genetic transformation of Neurospora crassa. Mol Gen Genet. 1981;184(3):567–569. [PubMed]
  • Rambosek J, Leach J. Recombinant DNA in filamentous fungi: progress and prospects. Crit Rev Biotechnol. 1987;6(4):357–393. [PubMed]
  • Razanamparany V, Bégueret J. Positive screening and transformation of ura5 mutants in the fungus Podospora anserina: characterization of the transformants. Curr Genet. 1986;10(11):811–817. [PubMed]
  • Rodriguez RJ, Yoder OC. Selectable genes for transformation of the fungal plant pathogen Glomerella cingulata f. sp. phaseoli (Colletotrichum lindemuthianum). Gene. 1987;54(1):73–81. [PubMed]
  • Rossier C, Pugin A, Turian G. Genetic analysis of transformation in a microconidiating strain of Neurospora crassa. Curr Genet. 1985;10(4):313–320. [PubMed]
  • Rothstein RJ. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. [PubMed]
  • Rudolph H, Koenig-Rauseo I, Hinnen A. One-step gene replacement in yeast by cotransformation. Gene. 1985;36(1-2):87–95. [PubMed]
  • Russell P, Nurse P. The mitotic inducer nim1+ functions in a regulatory network of protein kinase homologs controlling the initiation of mitosis. Cell. 1987 May 22;49(4):569–576. [PubMed]
  • Sakaguchi J, Yamamoto M. Cloned ural locus of Schizosaccharomyces pombe propagates autonomously in this yeast assuming a polymeric form. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7819–7823. [PMC free article] [PubMed]
  • Sakai K, Sakaguchi J, Yamamoto M. High-frequency cotransformation by copolymerization of plasmids in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol. 1984 Apr;4(4):651–656. [PMC free article] [PubMed]
  • Scherer S, Davis RW. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4951–4955. [PMC free article] [PubMed]
  • Selker EU, Cambareri EB, Jensen BC, Haack KR. Rearrangement of duplicated DNA in specialized cells of Neurospora. Cell. 1987 Dec 4;51(5):741–752. [PubMed]
  • Shortle D, Haber JE, Botstein D. Lethal disruption of the yeast actin gene by integrative DNA transformation. Science. 1982 Jul 23;217(4557):371–373. [PubMed]
  • Shortle D, Novick P, Botstein D. Construction and genetic characterization of temperature-sensitive mutant alleles of the yeast actin gene. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4889–4893. [PMC free article] [PubMed]
  • Singh H, Bieker JJ, Dumas LB. Genetic transformation of Saccharomyces cerevisiae with single-stranded circular DNA vectors. Gene. 1982 Dec;20(3):441–449. [PubMed]
  • Skatrud PL, Queener SW, Carr LG, Fisher DL. Efficient integrative transformation of Cephalosporium acremonium. Curr Genet. 1987;12(5):337–348. [PubMed]
  • Smolik-Utlaut S, Petes TD. Recombination of plasmids into the Saccharomyces cerevisiae chromosome is reduced by small amounts of sequence heterogeneity. Mol Cell Biol. 1983 Jul;3(7):1204–1211. [PMC free article] [PubMed]
  • Stinchcomb DT, Struhl K, Davis RW. Isolation and characterisation of a yeast chromosomal replicator. Nature. 1979 Nov 1;282(5734):39–43. [PubMed]
  • Stohl LL, Akins RA, Lambowitz AM. Characterization of deletion derivatives of an autonomously replicating Neurospora plasmid. Nucleic Acids Res. 1984 Aug 10;12(15):6169–6178. [PMC free article] [PubMed]
  • Stohl LL, Lambowitz AM. Construction of a shuttle vector for the filamentous fungus Neurospora crassa. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1058–1062. [PMC free article] [PubMed]
  • Struhl K. Direct selection for gene replacement events in yeast. Gene. 1983 Dec;26(2-3):231–241. [PubMed]
  • Struhl K, Stinchcomb DT, Scherer S, Davis RW. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1035–1039. [PMC free article] [PubMed]
  • Suárez T, Eslava AP. Transformation of Phycomyces with a bacterial gene for kanamycin resistance. Mol Gen Genet. 1988 Apr;212(1):120–123. [PubMed]
  • Szabó G, Schablik M, Fekete Z, Zsindely A. A comparative study of DNA-induced transformants and spontaneous revertants of inositolless Neurospora crassa. Acta Biol Acad Sci Hung. 1978;29(4):375–384. [PubMed]
  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. [PubMed]
  • Tatchell K, Chaleff DT, DeFeo-Jones D, Scolnick EM. Requirement of either of a pair of ras-related genes of Saccharomyces cerevisiae for spore viability. Nature. 1984 Jun 7;309(5968):523–527. [PubMed]
  • Thomas GH, Connerton IF, Fincham JR. Molecular cloning, identification and transcriptional analysis of genes involved in acetate utilization in Neurospora crassa. Mol Microbiol. 1988 Sep;2(5):599–606. [PubMed]
  • Tikhomirova LP, Ikonomova RN, Kuznetsova EN. Evidence for autonomous replication and stabilization of recombinant plasmids in the transformants of yeast Hansenula polymorpha. Curr Genet. 1986;10(10):741–747. [PubMed]
  • Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Davies RW. Transformation by integration in Aspergillus nidulans. Gene. 1983 Dec;26(2-3):205–221. [PubMed]
  • Tsuchiya E, Shakuto S, Miyakawa T, Fukui S. Characterization of a DNA uptake reaction through the nuclear membrane of isolated yeast nuclei. J Bacteriol. 1988 Feb;170(2):547–551. [PMC free article] [PubMed]
  • Turgeon BG, Garber RC, Yoder OC. Development of a fungal transformation system based on selection of sequences with promoter activity. Mol Cell Biol. 1987 Sep;7(9):3297–3305. [PMC free article] [PubMed]
  • van Gorcom RF, Pouwels PH, Goosen T, Visser J, van den Broek HW, Hamer JE, Timberlake WE, van den Hondel CA. Expression of an Escherichia coli beta-galactosidase fusion gene in Aspergillus nidulans. Gene. 1985;40(1):99–106. [PubMed]
  • van Hartingsveldt W, Mattern IE, van Zeijl CM, Pouwels PH, van den Hondel CA. Development of a homologous transformation system for Aspergillus niger based on the pyrG gene. Mol Gen Genet. 1987 Jan;206(1):71–75. [PubMed]
  • Vollmer SJ, Yanofsky C. Efficient cloning of genes of Neurospora crassa. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4869–4873. [PMC free article] [PubMed]
  • Wang J, Holden DW, Leong SA. Gene transfer system for the phytopathogenic fungus Ustilago maydis. Proc Natl Acad Sci U S A. 1988 Feb;85(3):865–869. [PMC free article] [PubMed]
  • Ward M, Wilkinson B, Turner G. Transformation of Aspergillus nidulans with a cloned, oligomycin-resistant ATP synthase subunit 9 gene. Mol Gen Genet. 1986 Feb;202(2):265–270. [PubMed]
  • Ward M, Wilson LJ, Carmona CL, Turner G. The oliC3 gene of Aspergillus niger: isolation, sequence and use as a selectable marker for transformation. Curr Genet. 1988 Jul;14(1):37–42. [PubMed]
  • Wernars K, Goosen T, Swart K, van den Broek HW. Genetic analysis of Aspergillus nidulans AmdS+ transformants. Mol Gen Genet. 1986 Nov;205(2):312–317. [PubMed]
  • Wernars K, Goosen T, Wennekes BM, Swart K, van den Hondel CA, van den Broek HW. Cotransformation of Aspergillus nidulans: a tool for replacing fungal genes. Mol Gen Genet. 1987 Aug;209(1):71–77. [PubMed]
  • Wernars K, Goosen T, Wennekes LM, Visser J, Bos CJ, van den Broek HW, van Gorcom RF, van den Hondel CA, Pouwels PH. Gene amplification in Aspergillus nidulans by transformation with vectors containing the amdS gene. Curr Genet. 1985;9(5):361–368. [PubMed]
  • Yelton MM, Hamer JE, Timberlake WE. Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1470–1474. [PMC free article] [PubMed]
  • Yelton MM, Timberlake WE, Hondel CA. A cosmid for selecting genes by complementation in Aspergillus nidulans: Selection of the developmentally regulated yA locus. Proc Natl Acad Sci U S A. 1985 Feb;82(3):834–838. [PMC free article] [PubMed]
  • Zakian VA, Blanton HM, Wetzel L, Dani GM. Size threshold for Saccharomyces cerevisiae chromosomes: generation of telocentric chromosomes from an unstable minichromosome. Mol Cell Biol. 1986 Mar;6(3):925–932. [PMC free article] [PubMed]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...