• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
Acta Crystallogr Sect E Struct Rep Online. May 1, 2013; 69(Pt 5): o739.
Published online Apr 17, 2013. doi:  10.1107/S1600536813010040
PMCID: PMC3648270

(1S,3R,8R,9S,11R)-10,10-Di­bromo-2,2-di­chloro-3,7,7,11-tetra­methyl­tetra­cyclo­[6.5.0.01,3.09,11]trideca­ne

Abstract

The title compound, C17H24Br2Cl2, was synthesized from β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzo­cyclo­heptene), which was isolated from the essential oil of the Atlas cedar (Cedrus Atlantica). The asymmetric unit contains two independent mol­ecules. Each mol­ecule is built up from fused six-, seven- and two three-membered rings. In both mol­ecules, the six-membered ring has a half-chair conformation, whereas the seven-membered ring displays a boat conformation. No specific inter­molecular inter­actions are noted in the crystal packing.

Related literature  

For similar compounds, see: Ourhriss et al. (2013 [triangle]); Oukhrib et al. (2013a [triangle],b [triangle]). For the biological proprieties of β-himachalene, see: El Haib et al. (2011 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-69-0o739-scheme1.jpg

Experimental  

Crystal data  

  • C17H24Br2Cl2
  • M r = 459.08
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-69-0o739-efi1.jpg
  • a = 18.377 (16) Å
  • b = 6.519 (6) Å
  • c = 30.82 (3) Å
  • β = 93.233 (16)°
  • V = 3687 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 4.68 mm−1
  • T = 296 K
  • 0.43 × 0.31 × 0.27 mm

Data collection  

  • Bruker X8 APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.739, T max = 0.867
  • 40489 measured reflections
  • 9155 independent reflections
  • 6959 reflections with I > 2σ(I)
  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.103
  • S = 1.04
  • 9155 reflections
  • 379 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.44 e Å−3
  • Absolute structure: Flack & Bernardinelli (2000 [triangle]), 3988 Friedel pairs
  • Flack parameter: 0.029 (8)

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]) and publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813010040/vm2192sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813010040/vm2192Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

Comment

This work is a part of our ongoing program concerning the valorization of the most abundant essential oils in Morocco, such as Cedrus atlantica. This oil is made up mainly (50%) of β-himachalene (Ourhriss et al., 2013; Oukhrib et al., 2013a,b). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (El Haib et al., 2011). We present here the crystal structure of the title compound, (1S,3R,8R,9S,11R)-2,2-dichloro-10,10-dibromo-3,7,7,11-tetramethyltetracyclo [6.5.0.01,3.09,11]tridecane noted (I).

As shown in Fig. 1, each molecule of the title compound is build up by fused six- and seven-membered rings, which are fused to two three-membered rings. In the first molecule, the total puckering amplitude QT = 0.462 (4) Å and spherical polar angle θ2 = 142.4 (5)° and [var phi]2 = 136.2 (8)°, obtained for the six-membered ring are compatible with a half chair conformation, whereas those calculated for the seven-membered ring (QT = 1.146 (5) Å, θ2 = 87.1 (3)°, [var phi]2 = -48.8 (3)° and [var phi]3 = -122 (4)° (Cremer & Pople, 1975)) involve a boat conformation. Nearly the same values are observed in the second molecule, and consequently the same conformation is present, as shown in the fitting drawing (Fig. 2, r.m.s. deviation 0.057 Å). Owing to the presence of Br and Cl atoms, the absolute configuration could be fully confirmed from anomalous dispersion effects, by refining the Flack parameter as C1(S),C3(R),C8(R),C9(S), and C11(R). The crystal packing exhibits no short intermolecular contacts.

Experimental

A solution containing 3 g (8 mmol) of (1S,3R,8S)-2,2-dichloro- 3,7,7,10- tetramethyltricyclo [6.4.0.01,3]dodec-9-ene and 1 ml (10 mmol) of CHBr3 in 40 ml of dichloromethane was added dropwise at 273 K over 30 min to 1 g of pulverized sodium hydroxide and 40 mg of N–benzyltriethylammonium chloride placed in a 100 ml three–necked flask. After stirring at room temperature for 2 h, the mixture was filtered on celite and concentrated in vacuum. The residue obtained was chromatographed on silicagel column impregnated with silver nitrate (10%) with a mixture of hexane - ethyl acetate (96–4) used as eluent. The two diastereoisomers (1S,3R,8R,9S,11R) -10,10-dichloro-2,2-dibromo-3,7,7,11- tetramethyltetracyclo [6.5.0.01,3.09,11]tridecane (X) and its isomer (1S,3R,8R, 9R, 11S)- 10,10- dichloro-2,2-dibromo-3,7,7,11-tetramethyltetracyclo[6.5.0.01,3.09,11] tridecane (Y), were obtained by this procedure in a 85/15 ratio and a combined yield of 70% (2.5 g; 5.6 mmol). The title compound (isomer X) was recrystallized from hexane.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2 Ueq(methylene, methine) and Uiso(H) = 1.5 Ueq(methyl). The space group is noncentrosymmetric and the polar axis restraint is generated automatically by SHELXL program. The 3988 Friedel pairs were not merged.

Figures

Fig. 1.
Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
View showing the fitting of the two molecules building the asymmetric unit.

Crystal data

C17H24Br2Cl2F(000) = 1840
Mr = 459.08Dx = 1.654 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: c 2yCell parameters from 9155 reflections
a = 18.377 (16) Åθ = 2.4–28.7°
b = 6.519 (6) ŵ = 4.68 mm1
c = 30.82 (3) ÅT = 296 K
β = 93.233 (16)°Block, colourless
V = 3687 (6) Å30.43 × 0.31 × 0.27 mm
Z = 8

Data collection

Bruker X8 APEX diffractometer9155 independent reflections
Radiation source: fine-focus sealed tube6959 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
[var phi] and ω scansθmax = 28.7°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −24→24
Tmin = 0.739, Tmax = 0.867k = −8→8
40489 measured reflectionsl = −41→41

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.103w = 1/[σ2(Fo2) + (0.0444P)2 + 4.0898P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
9155 reflectionsΔρmax = 0.67 e Å3
379 parametersΔρmin = −0.44 e Å3
1 restraintAbsolute structure: Flack & Bernardinelli (2000), 3988 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.029 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.69402 (2)0.22377 (9)0.666261 (16)0.05626 (15)
Br20.63800 (2)0.29919 (8)0.56956 (2)0.06228 (17)
Br30.81097 (3)0.09644 (10)0.840122 (16)0.06037 (16)
Br40.85782 (3)0.15293 (10)0.93871 (2)0.06974 (19)
Cl40.66339 (7)−0.1805 (2)0.76362 (3)0.0535 (3)
Cl30.65444 (7)0.24769 (19)0.78504 (4)0.0510 (3)
Cl20.85390 (6)0.41099 (15)0.71165 (3)0.0384 (2)
Cl10.85215 (6)−0.01541 (18)0.73567 (3)0.0441 (3)
C80.86557 (16)0.2398 (5)0.61173 (10)0.0204 (6)
H80.86410.37860.62390.024*
C70.92400 (19)0.2407 (6)0.57466 (11)0.0259 (7)
C10.88476 (18)0.0909 (5)0.64962 (10)0.0213 (7)
C20.8812 (2)0.1600 (6)0.69673 (11)0.0281 (8)
C90.79025 (18)0.1957 (5)0.58910 (11)0.0244 (7)
H90.78740.24750.55920.029*
C100.71591 (19)0.1842 (6)0.60708 (12)0.0315 (8)
C130.8639 (2)−0.1306 (5)0.63885 (12)0.0279 (8)
H13A0.8783−0.21710.66350.034*
H13B0.8906−0.17590.61430.034*
C120.7817 (2)−0.1575 (6)0.62784 (15)0.0391 (10)
H12A0.7726−0.29780.61860.047*
H12B0.7557−0.13450.65390.047*
C30.95537 (19)0.1338 (6)0.67808 (12)0.0289 (8)
C110.7515 (2)−0.0120 (6)0.59218 (12)0.0315 (8)
C40.9979 (2)0.3277 (7)0.66790 (12)0.0362 (9)
H4A1.03030.36260.69270.043*
H4B0.96410.44060.66280.043*
C160.9041 (2)0.0880 (7)0.53687 (12)0.0400 (10)
H16A0.9027−0.04910.54820.060*
H16B0.94020.09610.51560.060*
H16C0.85720.12300.52360.060*
C150.9259 (2)0.4560 (7)0.55567 (14)0.0439 (10)
H15A0.87770.49530.54530.066*
H15B0.95780.45800.53200.066*
H15C0.94360.55040.57770.066*
C51.0427 (2)0.2985 (8)0.62777 (14)0.0465 (11)
H5A1.08770.22770.63640.056*
H5B1.05540.43210.61660.056*
C61.00158 (19)0.1757 (7)0.59140 (13)0.0376 (10)
H6A0.99860.03490.60130.045*
H6B1.03180.17510.56660.045*
C240.5723 (2)0.0880 (7)0.92056 (13)0.0387 (10)
C250.63553 (19)0.0851 (6)0.88610 (11)0.0276 (8)
H250.63890.22330.87380.033*
C280.7494 (2)−0.1594 (7)0.90993 (13)0.0382 (9)
C141.0047 (2)−0.0449 (8)0.69381 (14)0.0454 (11)
H14A1.0493−0.04060.67910.068*
H14B0.9803−0.17260.68760.068*
H14C1.0152−0.03320.72460.068*
C180.6206 (2)−0.0658 (6)0.84803 (12)0.0319 (9)
C200.5526 (2)−0.0342 (8)0.81676 (13)0.0433 (10)
C260.7074 (2)0.0406 (6)0.91218 (12)0.0330 (9)
H260.70570.08880.94220.040*
C340.7739 (3)−0.2710 (10)0.95177 (16)0.0646 (15)
H34A0.7455−0.39340.95450.097*
H34B0.7672−0.18300.97620.097*
H34C0.8245−0.30670.95100.097*
C300.6433 (2)−0.2858 (7)0.85972 (13)0.0369 (9)
H30A0.6156−0.33280.88370.044*
H30B0.6315−0.37440.83500.044*
C170.7213 (3)−0.1179 (8)0.55062 (16)0.0562 (13)
H17A0.7494−0.23890.54560.084*
H17B0.7242−0.02590.52650.084*
H17C0.6714−0.15540.55380.084*
C210.5072 (3)0.1560 (10)0.82436 (19)0.0658 (16)
H21A0.53960.27270.82870.079*
H21B0.47590.18260.79860.079*
C330.5880 (3)−0.0637 (10)0.95866 (17)0.0746 (18)
H33A0.5898−0.20110.94750.112*
H33B0.5500−0.05370.97870.112*
H33C0.6339−0.03030.97330.112*
C190.6278 (2)−0.0030 (7)0.80028 (13)0.0379 (9)
C270.7848 (2)0.0368 (7)0.89782 (13)0.0385 (10)
C290.7244 (2)−0.3040 (7)0.87242 (15)0.0448 (10)
H29A0.7519−0.27330.84730.054*
H29B0.7351−0.44440.88100.054*
C220.4606 (2)0.1369 (10)0.86313 (18)0.0636 (15)
H22A0.41550.06760.85400.076*
H22B0.44810.27330.87290.076*
C320.5706 (4)0.2969 (9)0.94119 (19)0.079 (2)
H32A0.61880.33330.95230.118*
H32B0.53830.29490.96460.118*
H32C0.55380.39600.91990.118*
C310.5073 (3)−0.2163 (9)0.80026 (16)0.0604 (14)
H31A0.4612−0.21560.81350.091*
H31B0.5328−0.34130.80760.091*
H31C0.4994−0.20710.76930.091*
C230.4979 (3)0.0178 (10)0.90194 (17)0.0654 (16)
H23A0.46490.01960.92540.078*
H23B0.5026−0.12410.89300.078*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0364 (2)0.0805 (4)0.0533 (3)0.0029 (2)0.0148 (2)−0.0100 (3)
Br20.0302 (2)0.0682 (4)0.0871 (4)0.0114 (2)−0.0092 (2)0.0232 (3)
Br30.0448 (3)0.0867 (4)0.0511 (3)−0.0068 (3)0.0154 (2)0.0094 (3)
Br40.0436 (3)0.0861 (5)0.0779 (4)−0.0139 (3)−0.0117 (2)−0.0230 (3)
Cl40.0625 (7)0.0642 (8)0.0342 (6)−0.0114 (6)0.0055 (5)−0.0110 (5)
Cl30.0611 (7)0.0489 (7)0.0432 (6)−0.0064 (5)0.0051 (5)0.0183 (5)
Cl20.0467 (6)0.0344 (5)0.0346 (5)0.0058 (4)0.0054 (4)−0.0094 (4)
Cl10.0583 (6)0.0463 (6)0.0285 (5)−0.0011 (5)0.0087 (4)0.0104 (4)
C80.0196 (15)0.0197 (16)0.0222 (16)0.0038 (12)0.0046 (12)0.0001 (14)
C70.0248 (17)0.0261 (19)0.0275 (17)0.0037 (14)0.0085 (13)0.0001 (15)
C10.0224 (16)0.0195 (16)0.0221 (16)0.0050 (13)0.0008 (13)0.0007 (14)
C20.0334 (19)0.0292 (19)0.0216 (17)0.0083 (15)−0.0001 (14)0.0016 (15)
C90.0252 (16)0.0254 (18)0.0228 (16)0.0053 (14)0.0029 (13)0.0052 (14)
C100.0220 (17)0.034 (2)0.038 (2)0.0016 (15)−0.0021 (15)0.0017 (17)
C130.036 (2)0.0145 (16)0.033 (2)0.0073 (14)−0.0022 (15)0.0042 (14)
C120.038 (2)0.024 (2)0.055 (3)−0.0049 (17)−0.0053 (19)0.0035 (19)
C30.0243 (17)0.034 (2)0.0276 (18)0.0054 (15)−0.0025 (14)−0.0004 (16)
C110.0299 (19)0.0282 (19)0.036 (2)−0.0007 (16)−0.0033 (15)−0.0016 (17)
C40.0292 (19)0.042 (2)0.037 (2)−0.0100 (18)−0.0069 (16)−0.0043 (18)
C160.046 (2)0.045 (2)0.029 (2)0.008 (2)0.0080 (17)−0.0047 (19)
C150.050 (3)0.040 (2)0.044 (2)0.000 (2)0.019 (2)0.009 (2)
C50.0259 (19)0.064 (3)0.049 (2)−0.008 (2)−0.0007 (17)0.006 (2)
C60.0231 (18)0.054 (3)0.036 (2)0.0111 (18)0.0109 (15)0.0012 (19)
C240.030 (2)0.048 (3)0.040 (2)−0.0042 (18)0.0111 (16)−0.005 (2)
C250.0291 (18)0.0270 (19)0.0267 (18)−0.0070 (15)0.0024 (14)0.0031 (16)
C280.034 (2)0.045 (3)0.035 (2)−0.0004 (19)−0.0016 (17)0.0050 (19)
C140.039 (2)0.051 (3)0.044 (2)0.020 (2)−0.0100 (19)0.005 (2)
C180.0308 (19)0.037 (2)0.0280 (19)−0.0081 (16)−0.0006 (15)0.0040 (17)
C200.038 (2)0.055 (3)0.036 (2)−0.008 (2)−0.0061 (18)0.007 (2)
C260.0283 (19)0.046 (2)0.0245 (18)−0.0060 (17)0.0006 (15)−0.0008 (17)
C340.066 (3)0.069 (4)0.057 (3)0.001 (3)−0.012 (3)0.023 (3)
C300.044 (2)0.032 (2)0.035 (2)−0.0077 (18)−0.0008 (17)0.0036 (18)
C170.051 (3)0.055 (3)0.061 (3)−0.012 (2)−0.012 (2)−0.011 (3)
C210.046 (3)0.076 (4)0.075 (4)0.005 (3)0.000 (3)0.026 (3)
C330.088 (4)0.075 (4)0.065 (3)0.007 (3)0.048 (3)0.020 (3)
C190.042 (2)0.042 (2)0.030 (2)−0.0063 (19)−0.0020 (16)0.0045 (18)
C270.033 (2)0.050 (3)0.032 (2)−0.0042 (18)−0.0054 (16)−0.0078 (19)
C290.047 (2)0.027 (2)0.060 (3)0.0029 (19)−0.005 (2)−0.002 (2)
C220.028 (2)0.072 (4)0.091 (4)0.011 (2)0.007 (2)0.008 (3)
C320.108 (5)0.056 (3)0.079 (4)−0.024 (3)0.060 (4)−0.020 (3)
C310.045 (3)0.080 (4)0.055 (3)−0.023 (3)−0.015 (2)−0.001 (3)
C230.044 (3)0.083 (4)0.071 (4)−0.007 (3)0.021 (3)−0.007 (3)

Geometric parameters (Å, º)

Br1—C101.907 (4)C24—C331.550 (7)
Br2—C101.940 (4)C24—C251.618 (5)
Br3—C271.908 (4)C25—C261.535 (5)
Br4—C271.942 (4)C25—C181.544 (5)
Cl4—C191.768 (5)C25—H250.9800
Cl3—C191.777 (5)C28—C271.491 (6)
Cl2—C21.779 (4)C28—C261.518 (6)
Cl1—C21.762 (4)C28—C341.526 (6)
C8—C91.541 (5)C28—C291.542 (6)
C8—C11.544 (5)C14—H14A0.9600
C8—C71.612 (4)C14—H14B0.9600
C8—H80.9800C14—H14C0.9600
C7—C151.522 (6)C18—C301.531 (6)
C7—C61.548 (5)C18—C191.541 (5)
C7—C161.560 (5)C18—C201.549 (5)
C1—C21.525 (5)C20—C191.514 (6)
C1—C131.526 (5)C20—C311.520 (7)
C1—C31.550 (5)C20—C211.520 (8)
C2—C31.519 (5)C26—C271.513 (6)
C9—C101.505 (5)C26—H260.9800
C9—C111.535 (5)C34—H34A0.9600
C9—H90.9800C34—H34B0.9600
C10—C111.519 (6)C34—H34C0.9600
C13—C121.539 (5)C30—C291.523 (6)
C13—H13A0.9700C30—H30A0.9700
C13—H13B0.9700C30—H30B0.9700
C12—C111.532 (6)C17—H17A0.9600
C12—H12A0.9700C17—H17B0.9600
C12—H12B0.9700C17—H17C0.9600
C3—C41.528 (6)C21—C221.515 (7)
C3—C141.537 (5)C21—H21A0.9700
C11—C171.532 (6)C21—H21B0.9700
C4—C51.536 (6)C33—H33A0.9600
C4—H4A0.9700C33—H33B0.9600
C4—H4B0.9700C33—H33C0.9600
C16—H16A0.9600C29—H29A0.9700
C16—H16B0.9600C29—H29B0.9700
C16—H16C0.9600C22—C231.553 (8)
C15—H15A0.9600C22—H22A0.9700
C15—H15B0.9600C22—H22B0.9700
C15—H15C0.9600C32—H32A0.9600
C5—C61.541 (6)C32—H32B0.9600
C5—H5A0.9700C32—H32C0.9600
C5—H5B0.9700C31—H31A0.9600
C6—H6A0.9700C31—H31B0.9600
C6—H6B0.9700C31—H31C0.9600
C24—C321.504 (7)C23—H23A0.9700
C24—C231.524 (7)C23—H23B0.9700
C9—C8—C1112.7 (3)C27—C28—C2660.4 (3)
C9—C8—C7107.3 (3)C27—C28—C34120.5 (4)
C1—C8—C7113.9 (3)C26—C28—C34119.8 (4)
C9—C8—H8107.5C27—C28—C29116.9 (3)
C1—C8—H8107.5C26—C28—C29115.3 (3)
C7—C8—H8107.5C34—C28—C29113.8 (4)
C15—C7—C6109.9 (3)C3—C14—H14A109.5
C15—C7—C16108.1 (3)C3—C14—H14B109.5
C6—C7—C16104.3 (3)H14A—C14—H14B109.5
C15—C7—C8107.9 (3)C3—C14—H14C109.5
C6—C7—C8113.6 (3)H14A—C14—H14C109.5
C16—C7—C8112.9 (3)H14B—C14—H14C109.5
C2—C1—C13117.6 (3)C30—C18—C19115.9 (3)
C2—C1—C8121.0 (3)C30—C18—C25112.6 (3)
C13—C1—C8112.7 (3)C19—C18—C25122.4 (3)
C2—C1—C359.2 (2)C30—C18—C20118.1 (3)
C13—C1—C3119.0 (3)C19—C18—C2058.7 (3)
C8—C1—C3117.6 (3)C25—C18—C20119.4 (4)
C3—C2—C161.2 (2)C19—C20—C31119.0 (4)
C3—C2—Cl1119.8 (3)C19—C20—C21117.5 (4)
C1—C2—Cl1119.2 (3)C31—C20—C21113.2 (4)
C3—C2—Cl2118.2 (3)C19—C20—C1860.4 (3)
C1—C2—Cl2123.1 (3)C31—C20—C18120.8 (4)
Cl1—C2—Cl2108.67 (19)C21—C20—C18116.3 (4)
C10—C9—C1160.0 (2)C27—C26—C2858.9 (3)
C10—C9—C8130.8 (3)C27—C26—C25130.2 (3)
C11—C9—C8122.9 (3)C28—C26—C25124.3 (3)
C10—C9—H9111.2C27—C26—H26111.2
C11—C9—H9111.2C28—C26—H26111.2
C8—C9—H9111.2C25—C26—H26111.2
C9—C10—C1161.0 (2)C28—C34—H34A109.5
C9—C10—Br1126.2 (3)C28—C34—H34B109.5
C11—C10—Br1121.4 (3)H34A—C34—H34B109.5
C9—C10—Br2114.6 (3)C28—C34—H34C109.5
C11—C10—Br2117.5 (3)H34A—C34—H34C109.5
Br1—C10—Br2109.24 (18)H34B—C34—H34C109.5
C1—C13—C12112.8 (3)C29—C30—C18112.5 (3)
C1—C13—H13A109.0C29—C30—H30A109.1
C12—C13—H13A109.0C18—C30—H30A109.1
C1—C13—H13B109.0C29—C30—H30B109.1
C12—C13—H13B109.0C18—C30—H30B109.1
H13A—C13—H13B107.8H30A—C30—H30B107.8
C11—C12—C13113.5 (3)C11—C17—H17A109.5
C11—C12—H12A108.9C11—C17—H17B109.5
C13—C12—H12A108.9H17A—C17—H17B109.5
C11—C12—H12B108.9C11—C17—H17C109.5
C13—C12—H12B108.9H17A—C17—H17C109.5
H12A—C12—H12B107.7H17B—C17—H17C109.5
C2—C3—C4117.7 (3)C22—C21—C20113.2 (5)
C2—C3—C14119.4 (3)C22—C21—H21A108.9
C4—C3—C14113.1 (3)C20—C21—H21A108.9
C2—C3—C159.6 (2)C22—C21—H21B108.9
C4—C3—C1117.0 (3)C20—C21—H21B108.9
C14—C3—C1120.1 (3)H21A—C21—H21B107.7
C10—C11—C17119.4 (4)C24—C33—H33A109.5
C10—C11—C12116.7 (3)C24—C33—H33B109.5
C17—C11—C12114.9 (4)H33A—C33—H33B109.5
C10—C11—C959.0 (2)C24—C33—H33C109.5
C17—C11—C9119.6 (4)H33A—C33—H33C109.5
C12—C11—C9116.1 (3)H33B—C33—H33C109.5
C3—C4—C5111.5 (4)C20—C19—C1860.9 (3)
C3—C4—H4A109.3C20—C19—Cl4120.3 (3)
C5—C4—H4A109.3C18—C19—Cl4119.5 (3)
C3—C4—H4B109.3C20—C19—Cl3118.9 (3)
C5—C4—H4B109.3C18—C19—Cl3122.5 (3)
H4A—C4—H4B108.0Cl4—C19—Cl3108.4 (2)
C7—C16—H16A109.5C28—C27—C2660.7 (3)
C7—C16—H16B109.5C28—C27—Br3123.0 (3)
H16A—C16—H16B109.5C26—C27—Br3124.0 (3)
C7—C16—H16C109.5C28—C27—Br4117.8 (3)
H16A—C16—H16C109.5C26—C27—Br4115.5 (3)
H16B—C16—H16C109.5Br3—C27—Br4108.9 (2)
C7—C15—H15A109.5C30—C29—C28113.1 (4)
C7—C15—H15B109.5C30—C29—H29A109.0
H15A—C15—H15B109.5C28—C29—H29A109.0
C7—C15—H15C109.5C30—C29—H29B109.0
H15A—C15—H15C109.5C28—C29—H29B109.0
H15B—C15—H15C109.5H29A—C29—H29B107.8
C4—C5—C6112.8 (3)C21—C22—C23113.8 (4)
C4—C5—H5A109.0C21—C22—H22A108.8
C6—C5—H5A109.0C23—C22—H22A108.8
C4—C5—H5B109.0C21—C22—H22B108.8
C6—C5—H5B109.0C23—C22—H22B108.8
H5A—C5—H5B107.8H22A—C22—H22B107.7
C5—C6—C7120.3 (4)C24—C32—H32A109.5
C5—C6—H6A107.2C24—C32—H32B109.5
C7—C6—H6A107.2H32A—C32—H32B109.5
C5—C6—H6B107.2C24—C32—H32C109.5
C7—C6—H6B107.2H32A—C32—H32C109.5
H6A—C6—H6B106.9H32B—C32—H32C109.5
C32—C24—C23113.1 (5)C20—C31—H31A109.5
C32—C24—C33105.4 (4)C20—C31—H31B109.5
C23—C24—C33102.6 (4)H31A—C31—H31B109.5
C32—C24—C25108.7 (4)C20—C31—H31C109.5
C23—C24—C25114.3 (3)H31A—C31—H31C109.5
C33—C24—C25112.4 (4)H31B—C31—H31C109.5
C26—C25—C18112.8 (3)C24—C23—C22119.2 (5)
C26—C25—C24106.7 (3)C24—C23—H23A107.5
C18—C25—C24113.8 (3)C22—C23—H23A107.5
C26—C25—H25107.8C24—C23—H23B107.5
C18—C25—H25107.8C22—C23—H23B107.5
C24—C25—H25107.8H23A—C23—H23B107.0

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2192).

References

  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  • El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.
  • Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  • Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.
  • Oukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013a). Acta Cryst. E69, o521–o522. [PMC free article] [PubMed]
  • Oukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013b). Acta Cryst. E69, o589–o590. [PMC free article] [PubMed]
  • Ourhriss, N., Benharref, A., Saadi, M., El Ammari, L. & Berraho, M. (2013). Acta Cryst. E69, o275. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography
PubReader format: click here to try

Formats:

Related citations in PubMed

See reviews...See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...