• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
Mol Cell Biol. Dec 1990; 10(12): 6299–6305.
PMCID: PMC362905

Effect of 5' splice site mutations on splicing of the preceding intron.

Abstract

Three exon constructs containing identical intron and exon sequences were mutated at the 5' splice site beginning intron 2 and assayed for the effect of the mutation on splicing of the upstream intron in vitro. Alteration of two or six bases within the 5' splice site reduced removal of intron 1 at least 20-fold, as determined by quantitation of either spliced product or released lariat RNA. The prominent product was skip splicing of exon 1 to exon 3. Examination of complex formation indicated that mutation of the 5' splice site terminating exon 2 depressed the ability of precursor RNAs containing just the affected exon to direct assembly in vitro. These results suggest that mutation at the end of an internal exon inhibits the ability of the exon to be recognized by splicing factors. A comparison of the known vertebrate 5' splice site mutations in which the mutation resides at the end of an internal exon indicated that exon skipping is the preferred phenotype for this type of mutation, in agreement with the in vitro observation reported here. Inhibition of splicing by mutation at the distal and of the exon supports the suggestion that exons, rather than splice sites, are the recognition units for assembly of the spliceosome.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.8M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aebi M, Hornig H, Padgett RA, Reiser J, Weissmann C. Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA. Cell. 1986 Nov 21;47(4):555–565. [PubMed]
  • Aebi M, Hornig H, Weissmann C. 5' cleavage site in eukaryotic pre-mRNA splicing is determined by the overall 5' splice region, not by the conserved 5' GU. Cell. 1987 Jul 17;50(2):237–246. [PubMed]
  • Bakhshi A, Guglielmi P, Siebenlist U, Ravetch JV, Jensen JP, Korsmeyer SJ. A DNA insertion/deletion necessitates an aberrant RNA splice accounting for a mu heavy chain disease protein. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2689–2693. [PMC free article] [PubMed]
  • Brandt CR, Morrison SL, Birshtein BK, Milcarek C. Loss of a consensus splice signal in a mutant immunoglobulin gene eliminates the CH1 domain exon from the mRNA. Mol Cell Biol. 1984 Jul;4(7):1270–1277. [PMC free article] [PubMed]
  • Chen EY, Liao YC, Smith DH, Barrera-Saldaña HA, Gelinas RE, Seeburg PH. The human growth hormone locus: nucleotide sequence, biology, and evolution. Genomics. 1989 May;4(4):479–497. [PubMed]
  • Dobkin C, Bank A. Reversibility of IVS 2 missplicing in a mutant human beta-globin gene. J Biol Chem. 1985 Dec 25;260(30):16332–16337. [PubMed]
  • Gallego ME, Nadal-Ginard B. Myosin light-chain 1/3 gene alternative splicing: cis regulation is based upon a hierarchical compatibility between splice sites. Mol Cell Biol. 1990 May;10(5):2133–2144. [PMC free article] [PubMed]
  • Gibbs RA, Nguyen PN, Edwards A, Civitello AB, Caskey CT. Multiplex DNA deletion detection and exon sequencing of the hypoxanthine phosphoribosyltransferase gene in Lesch-Nyhan families. Genomics. 1990 Jun;7(2):235–244. [PubMed]
  • Green MR. Pre-mRNA splicing. Annu Rev Genet. 1986;20:671–708. [PubMed]
  • Hawkins JD. A survey on intron and exon lengths. Nucleic Acids Res. 1988 Nov 11;16(21):9893–9908. [PMC free article] [PubMed]
  • Hidaka Y, Palella TD, O'Toole TE, Tarlé SA, Kelley WN. Human adenine phosphoribosyltransferase. Identification of allelic mutations at the nucleotide level as a cause of complete deficiency of the enzyme. J Clin Invest. 1987 Nov;80(5):1409–1415. [PMC free article] [PubMed]
  • Hodges PE, Rosenberg LE. The spfash mouse: a missense mutation in the ornithine transcarbamylase gene also causes aberrant mRNA splicing. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4142–4146. [PMC free article] [PubMed]
  • Konarska MM, Sharp PA. Electrophoretic separation of complexes involved in the splicing of precursors to mRNAs. Cell. 1986 Sep 12;46(6):845–855. [PubMed]
  • Kudo S, Fukuda M. Structural organization of glycophorin A and B genes: glycophorin B gene evolved by homologous recombination at Alu repeat sequences. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4619–4623. [PMC free article] [PubMed]
  • Kühne T, Wieringa B, Reiser J, Weissmann C. Evidence against a scanning model of RNA splicing. EMBO J. 1983;2(5):727–733. [PMC free article] [PubMed]
  • Lamond AI, Konarska MM, Sharp PA. A mutational analysis of spliceosome assembly: evidence for splice site collaboration during spliceosome formation. Genes Dev. 1987 Aug;1(6):532–543. [PubMed]
  • Maniatis T, Reed R. The role of small nuclear ribonucleoprotein particles in pre-mRNA splicing. Nature. 1987 Feb 19;325(6106):673–678. [PubMed]
  • Marvit J, DiLella AG, Brayton K, Ledley FD, Robson KJ, Woo SL. GT to AT transition at a splice donor site causes skipping of the preceding exon in phenylketonuria. Nucleic Acids Res. 1987 Jul 24;15(14):5613–5628. [PMC free article] [PubMed]
  • Mitchell PJ, Urlaub G, Chasin L. Spontaneous splicing mutations at the dihydrofolate reductase locus in Chinese hamster ovary cells. Mol Cell Biol. 1986 Jun;6(6):1926–1935. [PMC free article] [PubMed]
  • Mount SM, Pettersson I, Hinterberger M, Karmas A, Steitz JA. The U1 small nuclear RNA-protein complex selectively binds a 5' splice site in vitro. Cell. 1983 Jun;33(2):509–518. [PubMed]
  • Ohno K, Suzuki K. Multiple abnormal beta-hexosaminidase alpha chain mRNAs in a compound-heterozygous Ashkenazi Jewish patient with Tay-Sachs disease. J Biol Chem. 1988 Dec 5;263(34):18563–18567. [PubMed]
  • Reed R, Maniatis T. A role for exon sequences and splice-site proximity in splice-site selection. Cell. 1986 Aug 29;46(5):681–690. [PubMed]
  • Robberson BL, Cote GJ, Berget SM. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol Cell Biol. 1990 Jan;10(1):84–94. [PMC free article] [PubMed]
  • Ruby SW, Abelson J. An early hierarchic role of U1 small nuclear ribonucleoprotein in spliceosome assembly. Science. 1988 Nov 18;242(4881):1028–1035. [PubMed]
  • Seidman JG, Leder P. A mutant immunoglobulin light chain is formed by aberrant DNA- and RNA-splicing events. Nature. 1980 Aug 21;286(5775):779–783. [PubMed]
  • Seraphin B, Rosbash M. Identification of functional U1 snRNA-pre-mRNA complexes committed to spliceosome assembly and splicing. Cell. 1989 Oct 20;59(2):349–358. [PubMed]
  • Sharp PA. Splicing of messenger RNA precursors. Science. 1987 Feb 13;235(4790):766–771. [PubMed]
  • Sikder SK, Kabat EA, Morrison SL. Alternative splicing patterns in an aberrantly rearranged immunoglobulin kappa-light-chain gene. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4045–4049. [PMC free article] [PubMed]
  • Tatei K, Takemura K, Tanaka H, Masaki T, Ohshima Y. Recognition of 5' and 3' splice site sequences in pre-mRNA studied with a filter binding technique. J Biol Chem. 1987 Aug 25;262(24):11667–11674. [PubMed]
  • Treisman R, Orkin SH, Maniatis T. Specific transcription and RNA splicing defects in five cloned beta-thalassaemia genes. Nature. 1983 Apr 14;302(5909):591–596. [PubMed]
  • Treisman R, Orkin SH, Maniatis T. Structural and functional defects in beta-thalassemia. Prog Clin Biol Res. 1983;134:99–121. [PubMed]
  • Treisman R, Proudfoot NJ, Shander M, Maniatis T. A single-base change at a splice site in a beta 0-thalassemic gene causes abnormal RNA splicing. Cell. 1982 Jul;29(3):903–911. [PubMed]
  • Tromp G, Prockop DJ. Single base mutation in the pro alpha 2(I) collagen gene that causes efficient splicing of RNA from exon 27 to exon 29 and synthesis of a shortened but in-frame pro alpha 2(I) chain. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5254–5258. [PMC free article] [PubMed]
  • Ulfendahl PJ, Kreivi JP, Akusjärvi G. Role of the branch site/3'-splice site region in adenovirus-2 E1A pre-mRNA alternative splicing: evidence for 5'- and 3'-splice site co-operation. Nucleic Acids Res. 1989 Feb 11;17(3):925–938. [PMC free article] [PubMed]
  • Weil D, Bernard M, Combates N, Wirtz MK, Hollister DW, Steinmann B, Ramirez F. Identification of a mutation that causes exon skipping during collagen pre-mRNA splicing in an Ehlers-Danlos syndrome variant. J Biol Chem. 1988 Jun 25;263(18):8561–8564. [PubMed]
  • Weil D, D'Alessio M, Ramirez F, de Wet W, Cole WG, Chan D, Bateman JF. A base substitution in the exon of a collagen gene causes alternative splicing and generates a structurally abnormal polypeptide in a patient with Ehlers-Danlos syndrome type VII. EMBO J. 1989 Jun;8(6):1705–1710. [PMC free article] [PubMed]
  • Weil D, D'Alessio M, Ramirez F, Steinmann B, Wirtz MK, Glanville RW, Hollister DW. Temperature-dependent expression of a collagen splicing defect in the fibroblasts of a patient with Ehlers-Danlos syndrome type VII. J Biol Chem. 1989 Oct 5;264(28):16804–16809. [PubMed]
  • Wieringa B, Hofer E, Weissmann C. A minimal intron length but no specific internal sequence is required for splicing the large rabbit beta-globin intron. Cell. 1984 Jul;37(3):915–925. [PubMed]
  • Wieringa B, Meyer F, Reiser J, Weissmann C. Unusual splice sites revealed by mutagenic inactivation of an authentic splice site of the rabbit beta-globin gene. Nature. 1983 Jan 6;301(5895):38–43. [PubMed]
  • Zapp ML, Berget SM. Evidence for nuclear factors involved in recognition of 5' splice sites. Nucleic Acids Res. 1989 Apr 11;17(7):2655–2674. [PMC free article] [PubMed]
  • Zhuang Y, Weiner AM. A compensatory base change in U1 snRNA suppresses a 5' splice site mutation. Cell. 1986 Sep 12;46(6):827–835. [PubMed]
  • Zillmann M, Rose SD, Berget SM. U1 small nuclear ribonucleoproteins are required early during spliceosome assembly. Mol Cell Biol. 1987 Aug;7(8):2877–2883. [PMC free article] [PubMed]
  • Zillmann M, Zapp ML, Berget SM. Gel electrophoretic isolation of splicing complexes containing U1 small nuclear ribonucleoprotein particles. Mol Cell Biol. 1988 Feb;8(2):814–821. [PMC free article] [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...