• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
Mol Cell Biol. Apr 1989; 9(4): 1746–1753.
PMCID: PMC362593

Heat shock and developmental regulation of the Drosophila melanogaster hsp83 gene.

Abstract

In contrast to the hsp70 gene, whose expression is normally at a very low level and increases by more than 2 orders of magnitude during heat shock, the hsp83 gene in Drosophila melanogaster is expressed at high levels during normal development and increases only severalfold in response to heat shock. Developmental expression of the hsp83 gene consists of a high level of tissue-general, basal expression and a very high level of expression in ovaries. We identified regions upstream of the hsp83 gene that were required for its developmental and heat shock-induced expression by assaying beta-galactosidase activity and mRNA levels in transgenic animals containing a series of 5' deletion and insertion mutations of an hsp83-lacZ fusion gene. Deletion of sequences upstream of the overlapping array of a previously defined heat shock consensus (HSC) sequence eliminated both forms of developmental expression of the hsp83 gene. As a result, the hsp83 gene with this deletion mutation was regulated like that of the hsp70 gene. Moreover, an in vivo polymer competition assay revealed that the overlapping HSC sequences of the hsp83 gene and the nonoverlapping HSC sequences of the hsp70 gene had similar affinities for the factor required for heat induction of the two heat shock genes. We discuss the functional similarity of hsp70 and hsp83 heat shock regulation in terms of a revised view of the heat shock-regulatory sequence.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.9M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Amin J, Ananthan J, Voellmy R. Key features of heat shock regulatory elements. Mol Cell Biol. 1988 Sep;8(9):3761–3769. [PMC free article] [PubMed]
  • Amin J, Mestril R, Lawson R, Klapper H, Voellmy R. The heat shock consensus sequence is not sufficient for hsp70 gene expression in Drosophila melanogaster. Mol Cell Biol. 1985 Jan;5(1):197–203. [PMC free article] [PubMed]
  • Bienz M, Pelham HR. Mechanisms of heat-shock gene activation in higher eukaryotes. Adv Genet. 1987;24:31–72. [PubMed]
  • Casadaban MJ, Chou J, Cohen SN. In vitro gene fusions that join an enzymatically active beta-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol. 1980 Aug;143(2):971–980. [PMC free article] [PubMed]
  • Cohen RS, Meselson M. Separate regulatory elements for the heat-inducible and ovarian expression of the Drosophila hsp26 gene. Cell. 1985 Dec;43(3 Pt 2):737–746. [PubMed]
  • Costlow N, Lis JT. High-resolution mapping of DNase I-hypersensitive sites of Drosophila heat shock genes in Drosophila melanogaster and Saccharomyces cerevisiae. Mol Cell Biol. 1984 Sep;4(9):1853–1863. [PMC free article] [PubMed]
  • Di Nocera PP, Dawid IB. Transient expression of genes introduced into cultured cells of Drosophila. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7095–7098. [PMC free article] [PubMed]
  • Dudler R, Travers AA. Upstream elements necessary for optimal function of the hsp 70 promoter in transformed flies. Cell. 1984 Sep;38(2):391–398. [PubMed]
  • Dura JM. Stage dependent synthesis of heat shock induced proteins in early embryos of Drosophila melanogaster. Mol Gen Genet. 1981;184(3):381–385. [PubMed]
  • Dynan WS, Tjian R. Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins. Nature. 316(6031):774–778. [PubMed]
  • Glaser RL, Wolfner MF, Lis JT. Spatial and temporal pattern of hsp26 expression during normal development. EMBO J. 1986 Apr;5(4):747–754. [PMC free article] [PubMed]
  • Hackett RW, Lis JT. Localization of the hsp83 transcript within a 3292 nucleotide sequence from the 63B heat shock locus of D. melanogaster. Nucleic Acids Res. 1983 Oct 25;11(20):7011–7030. [PMC free article] [PubMed]
  • Hiromi Y, Kuroiwa A, Gehring WJ. Control elements of the Drosophila segmentation gene fushi tarazu. Cell. 1985 Dec;43(3 Pt 2):603–613. [PubMed]
  • Hoffman EP, Gerring SL, Corces VG. The ovarian, ecdysterone, and heat-shock-responsive promoters of the Drosophila melanogaster hsp27 gene react very differently to perturbations of DNA sequence. Mol Cell Biol. 1987 Mar;7(3):973–981. [PMC free article] [PubMed]
  • Karch F, Török I, Tissières A. Extensive regions of homology in front of the two hsp70 heat shock variant genes in Drosophila melanogaster. J Mol Biol. 1981 May 25;148(3):219–230. [PubMed]
  • Lindquist S. Varying patterns of protein synthesis in Drosophila during heat shock: implications for regulation. Dev Biol. 1980 Jun 15;77(2):463–479. [PubMed]
  • Lindquist S. The heat-shock response. Annu Rev Biochem. 1986;55:1151–1191. [PubMed]
  • Lis JT, Simon JA, Sutton CA. New heat shock puffs and beta-galactosidase activity resulting from transformation of Drosophila with an hsp70-lacZ hybrid gene. Cell. 1983 Dec;35(2 Pt 1):403–410. [PubMed]
  • Maniatis T, Goodbourn S, Fischer JA. Regulation of inducible and tissue-specific gene expression. Science. 1987 Jun 5;236(4806):1237–1245. [PubMed]
  • O'Connor D, Lis JT. Two closely linked transcription units within the 63B heat shock puff locus of D. melanogaster display strikingly different regulation. Nucleic Acids Res. 1981 Oct 10;9(19):5075–5092. [PMC free article] [PubMed]
  • Pelham HR. A regulatory upstream promoter element in the Drosophila hsp 70 heat-shock gene. Cell. 1982 Sep;30(2):517–528. [PubMed]
  • Riddihough G, Pelham HR. Activation of the Drosophila hsp27 promoter by heat shock and by ecdysone involves independent and remote regulatory sequences. EMBO J. 1986 Jul;5(7):1653–1658. [PMC free article] [PubMed]
  • Rubin GM, Spradling AC. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. [PubMed]
  • Schneider I. Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol. 1972 Apr;27(2):353–365. [PubMed]
  • Simon JA, Lis JT. A germline transformation analysis reveals flexibility in the organization of heat shock consensus elements. Nucleic Acids Res. 1987 Apr 10;15(7):2971–2988. [PMC free article] [PubMed]
  • Simon JA, Sutton CA, Lobell RB, Glaser RL, Lis JT. Determinants of heat shock-induced chromosome puffing. Cell. 1985 Apr;40(4):805–817. [PubMed]
  • Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. [PubMed]
  • Southgate R, Ayme A, Voellmy R. Nucleotide sequence analysis of the Drosophila small heat shock gene cluster at locus 67B. J Mol Biol. 1983 Mar 25;165(1):35–57. [PubMed]
  • Sun XH, Lis JT, Wu R. The positive and negative transcriptional regulation of the Drosophila Gapdh-2 gene. Genes Dev. 1988 Jun;2(6):743–753. [PubMed]
  • Wu C. The 5' ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature. 1980 Aug 28;286(5776):854–860. [PubMed]
  • Wu C. Activating protein factor binds in vitro to upstream control sequences in heat shock gene chromatin. Nature. 1984 Sep 6;311(5981):81–84. [PubMed]
  • Xiao H, Lis JT. A consensus sequence polymer inhibits in vivo expression of heat shock genes. Mol Cell Biol. 1986 Sep;6(9):3200–3206. [PMC free article] [PubMed]
  • Xiao H, Lis JT. Germline transformation used to define key features of heat-shock response elements. Science. 1988 Mar 4;239(4844):1139–1142. [PubMed]
  • Yost HJ, Lindquist S. RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell. 1986 Apr 25;45(2):185–193. [PubMed]
  • Zimarino V, Wu C. Induction of sequence-specific binding of Drosophila heat shock activator protein without protein synthesis. Nature. 327(6124):727–730. [PubMed]
  • Zimmerman JL, Petri W, Meselson M. Accumulation of a specific subset of D. melanogaster heat shock mRNAs in normal development without heat shock. Cell. 1983 Apr;32(4):1161–1170. [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...