Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
Mol Cell Biol. 1990 Nov; 10(11): 5839–5848.
PMCID: PMC361368

Molecular analysis of nuc-1+, a gene controlling phosphorus acquisition in Neurospora crassa.


In response to phosphorus starvation, Neurospora crassa makes several enzymes that are undetectable or barely detectable in phosphate-sufficient cultures. The nuc-1+ gene, whose product regulates the synthesis of these enzymes, was cloned and sequenced. The nuc-1+ gene encodes a protein of 824 amino acids with a predicted molecular weight of 87,429. The amino acid sequence shows homology with two yeast proteins whose functions are analogous to that of the NUC-1 protein. Two nuc-1+ transcripts of 3.2 and 3.0 kilobases were detected; they were present in similar amounts during growth at low or high phosphate concentrations. The nuc-2+ gene encodes a product normally required for NUC-1 function, and yet a nuc-2 mutation can be complemented by overexpression of the nuc-1+ gene. This implies physical interactions between NUC-1 protein and the negative regulatory factor(s) PREG and/or PGOV. Analysis of nuc-2 and nuc-1; nuc-2 strains transformed by the nuc-1+ gene suggests that phosphate directly affects the level or activity of the negative regulatory factor(s) controlling phosphorus acquisition.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Akins RA, Lambowitz AM. General method for cloning Neurospora crassa nuclear genes by complementation of mutants. Mol Cell Biol. 1985 Sep;5(9):2272–2278. [PMC free article] [PubMed]
  • Arndt KT, Styles C, Fink GR. Multiple global regulators control HIS4 transcription in yeast. Science. 1987 Aug 21;237(4817):874–880. [PubMed]
  • Barthelmess IB. Mutants affecting amino acid cross-pathway control in Neurospora crassa. Genet Res. 1982 Apr;39(2):169–185. [PubMed]
  • Courey AJ, Tjian R. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell. 1988 Dec 2;55(5):887–898. [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Feinberg AP, Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. [PubMed]
  • Fu YH, Marzluf GA. Characterization of nit-2, the major nitrogen regulatory gene of Neurospora crassa. Mol Cell Biol. 1987 May;7(5):1691–1696. [PMC free article] [PubMed]
  • Fu YH, Paietta JV, Mannix DG, Marzluf GA. cys-3, the positive-acting sulfur regulatory gene of Neurospora crassa, encodes a protein with a putative leucine zipper DNA-binding element. Mol Cell Biol. 1989 Mar;9(3):1120–1127. [PMC free article] [PubMed]
  • Geever RF, Huiet L, Baum JA, Tyler BM, Patel VB, Rutledge BJ, Case ME, Giles NH. DNA sequence, organization and regulation of the qa gene cluster of Neurospora crassa. J Mol Biol. 1989 May 5;207(1):15–34. [PubMed]
  • Hasunuma K. Repressible extracellular nucleases in Neurospora crassa. Biochim Biophys Acta. 1973 Sep 7;319(3):288–293. [PubMed]
  • Johnston M. A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol Rev. 1987 Dec;51(4):458–476. [PMC free article] [PubMed]
  • Kammerer B, Guyonvarch A, Hubert JC. Yeast regulatory gene PPR1. I. Nucleotide sequence, restriction map and codon usage. J Mol Biol. 1984 Dec 5;180(2):239–250. [PubMed]
  • Kinsey JA, Rambosek JA. Transformation of Neurospora crassa with the cloned am (glutamate dehydrogenase) gene. Mol Cell Biol. 1984 Jan;4(1):117–122. [PMC free article] [PubMed]
  • Legrain M, De Wilde M, Hilger F. Isolation, physical characterization and expression analysis of the Saccharomyces cerevisiae positive regulatory gene PHO4. Nucleic Acids Res. 1986 Apr 11;14(7):3059–3073. [PMC free article] [PubMed]
  • Lehman JF, Gleason MK, Ahlgren SK, Metzenberg RL. Regulation of phosphate metabolism in Neurospora crassa. Characterization of regulatory mutants. Genetics. 1973 Sep;75(1):61–73. [PMC free article] [PubMed]
  • Lowendorf HS, Slayman CW. Genetic regulation of phosphate transport system II in Neurospora. Biochim Biophys Acta. 1975 Nov 17;413(1):95–103. [PubMed]
  • Mann BJ, Akins RA, Lambowitz AM, Metzenberg RL. The structural gene for a phosphorus-repressible phosphate permease in Neurospora crassa can complement a mutation in positive regulatory gene nuc-1. Mol Cell Biol. 1988 Mar;8(3):1376–1379. [PMC free article] [PubMed]
  • Mann BJ, Bowman BJ, Grotelueschen J, Metzenberg RL. Nucleotide sequence of pho-4+, encoding a phosphate-repressible phosphate permease of Neurospora crassa. Gene. 1989 Nov 30;83(2):281–289. [PubMed]
  • Mermod N, O'Neill EA, Kelly TJ, Tjian R. The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain. Cell. 1989 Aug 25;58(4):741–753. [PubMed]
  • Metzenberg RL, Chia W. Genetic control of phosphorus assimilation in Neurospora crassa: dose-dependent dominance and recessiveness in constitutive mutants. Genetics. 1979 Nov;93(3):625–643. [PMC free article] [PubMed]
  • Mitchell PJ, Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science. 1989 Jul 28;245(4916):371–378. [PubMed]
  • Murre C, McCaw PS, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell. 1989 Mar 10;56(5):777–783. [PubMed]
  • Nyc JF, Kadner RJ, Crocken BJ. A repressible alkaline phosphatase in Neurospora crassa. J Biol Chem. 1966 Apr 10;241(7):1468–1472. [PubMed]
  • Ogawa N, Oshima Y. Functional domains of a positive regulatory protein, PHO4, for transcriptional control of the phosphatase regulon in Saccharomyces cerevisiae. Mol Cell Biol. 1990 May;10(5):2224–2236. [PMC free article] [PubMed]
  • Paietta JV, Akins RA, Lambowitz AM, Marzluf GA. Molecular cloning and characterization of the cys-3 regulatory gene of Neurospora crassa. Mol Cell Biol. 1987 Jul;7(7):2506–2511. [PMC free article] [PubMed]
  • Patel VB, Giles NH. Autogenous regulation of the positive regulatory qa-1F gene in Neurospora crassa. Mol Cell Biol. 1985 Dec;5(12):3593–3599. [PMC free article] [PubMed]
  • Perkins DD, Barry EG. The cytogenetics of Neurospora. Adv Genet. 1977;19:133–285. [PubMed]
  • Sengstag C, Hinnen A. The sequence of the Saccharomyces cerevisiae gene PHO2 codes for a regulatory protein with unusual aminoacid composition. Nucleic Acids Res. 1987 Jan 12;15(1):233–246. [PMC free article] [PubMed]
  • Toh-E A, Ishikawa T. Genetic control of the synthesis of repressible phosphatases in Neurospora crassa. Genetics. 1971 Nov;69(3):339–351. [PMC free article] [PubMed]
  • Vogel K, Hörz W, Hinnen A. The two positively acting regulatory proteins PHO2 and PHO4 physically interact with PHO5 upstream activation regions. Mol Cell Biol. 1989 May;9(5):2050–2057. [PMC free article] [PubMed]
  • Vollmer SJ, Yanofsky C. Efficient cloning of genes of Neurospora crassa. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4869–4873. [PMC free article] [PubMed]
  • Yoshida K, Kuromitsu Z, Ogawa N, Oshima Y. Mode of expression of the positive regulatory genes PHO2 and PHO4 of the phosphatase regulon in Saccharomyces cerevisiae. Mol Gen Genet. 1989 May;217(1):31–39. [PubMed]
  • Yoshida K, Ogawa N, Oshima Y. Function of the PHO regulatory genes for repressible acid phosphatase synthesis in Saccharomyces cerevisiae. Mol Gen Genet. 1989 May;217(1):40–46. [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • MedGen
    Related information in MedGen
  • Nucleotide
    Published Nucleotide sequences
  • Protein
    Published protein sequences
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...