• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
Mol Cell Biol. Sep 1993; 13(9): 5266–5275.
PMCID: PMC360219

Distal regulatory elements from the mouse metallothionein locus stimulate gene expression in transgenic mice.

Abstract

DNA regions of 10 and 7 kb that flank the mouse metallothionein II (MT-II) and MT-I genes, respectively, were combined with a minimally marked MT-I (MT-I*) gene and tested in transgenic mice. This construct resulted in (i) position-independent expression of MT-I* mRNA and copy number-dependent expression, (ii) levels of hepatic MT-I mRNA per cell per transgene that were about half that derived from endogenous MT-I genes, (iii) appropriate regulation by metals and hormones, and (iv) tissue distribution of transgene mRNA that resembled that of endogenous MT-I mRNA. These features were not observed when MT-I* was tested without the flanking regions. These MT-I flanking sequences also improved the expression of rat growth hormone reporter genes, with or without introns, that were under the control of the MT-I promoter. Moreover, they enhanced expression from two of four heterologous promoters/enhancers that were tested. Deletion analysis indicated that regions known to have DNase I-hypersensitive sites were necessary but not sufficient for high-level expression. These data suggest that the DNA regions flanking the mouse MT-I and MT-II genes have functions like the locus control regions described for other genes.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.9M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Archer TK, Cordingley MG, Wolford RG, Hager GL. Transcription factor access is mediated by accurately positioned nucleosomes on the mouse mammary tumor virus promoter. Mol Cell Biol. 1991 Feb;11(2):688–698. [PMC free article] [PubMed]
  • Behringer RR, Mathews LS, Palmiter RD, Brinster RL. Dwarf mice produced by genetic ablation of growth hormone-expressing cells. Genes Dev. 1988 Apr;2(4):453–461. [PubMed]
  • Blom van Assendelft G, Hanscombe O, Grosveld F, Greaves DR. The beta-globin dominant control region activates homologous and heterologous promoters in a tissue-specific manner. Cell. 1989 Mar 24;56(6):969–977. [PubMed]
  • Bonifer C, Vidal M, Grosveld F, Sippel AE. Tissue specific and position independent expression of the complete gene domain for chicken lysozyme in transgenic mice. EMBO J. 1990 Sep;9(9):2843–2848. [PMC free article] [PubMed]
  • Brinster RL, Allen JM, Behringer RR, Gelinas RE, Palmiter RD. Introns increase transcriptional efficiency in transgenic mice. Proc Natl Acad Sci U S A. 1988 Feb;85(3):836–840. [PMC free article] [PubMed]
  • Brinster RL, Chen HY, Trumbauer ME, Yagle MK, Palmiter RD. Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4438–4442. [PMC free article] [PubMed]
  • Chambon P. Summary: the molecular biology of the eukaryotic genome is coming of age. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 2):1209–1234. [PubMed]
  • Compere SJ, Palmiter RD. DNA methylation controls the inducibility of the mouse metallothionein-I gene lymphoid cells. Cell. 1981 Jul;25(1):233–240. [PubMed]
  • De SK, McMaster MT, Andrews GK. Endotoxin induction of murine metallothionein gene expression. J Biol Chem. 1990 Sep 5;265(25):15267–15274. [PubMed]
  • Durnam DM, Palmiter RD. A practical approach for quantitating specific mRNAs by solution hybridization. Anal Biochem. 1983 Jun;131(2):385–393. [PubMed]
  • Elgin SC. On the importance of taking a firm position. Chromatin structure and gene expression sponsored by Fundación Juan March, Madrid, Spain September 24-26, 1990. New Biol. 1991 Jan;3(1):37–41. [PubMed]
  • Felsenfeld G. Chromatin as an essential part of the transcriptional mechanism. Nature. 1992 Jan 16;355(6357):219–224. [PubMed]
  • Forrester WC, Thompson C, Elder JT, Groudine M. A developmentally stable chromatin structure in the human beta-globin gene cluster. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1359–1363. [PMC free article] [PubMed]
  • Gross DS, Garrard WT. Nuclease hypersensitive sites in chromatin. Annu Rev Biochem. 1988;57:159–197. [PubMed]
  • Grosveld F, van Assendelft GB, Greaves DR, Kollias G. Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell. 1987 Dec 24;51(6):975–985. [PubMed]
  • Hamer DH. Metallothionein. Annu Rev Biochem. 1986;55:913–951. [PubMed]
  • Hammer RE, Swift GH, Ornitz DM, Quaife CJ, Palmiter RD, Brinster RL, MacDonald RJ. The rat elastase I regulatory element is an enhancer that directs correct cell specificity and developmental onset of expression in transgenic mice. Mol Cell Biol. 1987 Aug;7(8):2956–2967. [PMC free article] [PubMed]
  • Heckel JL, Sandgren EP, Degen JL, Palmiter RD, Brinster RL. Neonatal bleeding in transgenic mice expressing urokinase-type plasminogen activator. Cell. 1990 Aug 10;62(3):447–456. [PubMed]
  • MacArthur CA, Lieberman MW. Different types of hypersensitive sites in the mouse metallothionein gene region. J Biol Chem. 1987 Feb 15;262(5):2161–2165. [PubMed]
  • Ornitz DM, Hammer RE, Davison BL, Brinster RL, Palmiter RD. Promoter and enhancer elements from the rat elastase I gene function independently of each other and of heterologous enhancers. Mol Cell Biol. 1987 Oct;7(10):3466–3472. [PMC free article] [PubMed]
  • Palmiter RD, Brinster RL. Germ-line transformation of mice. Annu Rev Genet. 1986;20:465–499. [PubMed]
  • Palmiter RD, Sandgren EP, Avarbock MR, Allen DD, Brinster RL. Heterologous introns can enhance expression of transgenes in mice. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):478–482. [PMC free article] [PubMed]
  • Peschon JJ, Behringer RR, Brinster RL, Palmiter RD. Spermatid-specific expression of protamine 1 in transgenic mice. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5316–5319. [PMC free article] [PubMed]
  • Pinkert CA, Ornitz DM, Brinster RL, Palmiter RD. An albumin enhancer located 10 kb upstream functions along with its promoter to direct efficient, liver-specific expression in transgenic mice. Genes Dev. 1987 May;1(3):268–276. [PubMed]
  • Loc PV, Strätling WH. The matrix attachment regions of the chicken lysozyme gene co-map with the boundaries of the chromatin domain. EMBO J. 1988 Mar;7(3):655–664. [PMC free article] [PubMed]
  • Sandgren EP, Luetteke NC, Palmiter RD, Brinster RL, Lee DC. Overexpression of TGF alpha in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell. 1990 Jun 15;61(6):1121–1135. [PubMed]
  • Searle PF, Davison BL, Stuart GW, Wilkie TM, Norstedt G, Palmiter RD. Regulation, linkage, and sequence of mouse metallothionein I and II genes. Mol Cell Biol. 1984 Jul;4(7):1221–1230. [PMC free article] [PubMed]
  • Townes TM, Behringer RR. Human globin locus activation region (LAR): role in temporal control. Trends Genet. 1990 Jul;6(7):219–223. [PubMed]
  • Townes TM, Lingrel JB, Chen HY, Brinster RL, Palmiter RD. Erythroid-specific expression of human beta-globin genes in transgenic mice. EMBO J. 1985 Jul;4(7):1715–1723. [PMC free article] [PubMed]
  • von Kries JP, Buhrmester H, Strätling WH. A matrix/scaffold attachment region binding protein: identification, purification, and mode of binding. Cell. 1991 Jan 11;64(1):123–135. [PubMed]
  • Zambrowicz BP, Harendza CJ, Zimmermann JW, Brinster RL, Palmiter RD. Analysis of the mouse protamine 1 promoter in transgenic mice. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5071–5075. [PMC free article] [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • Compound
    Compound
    PubChem Compound links
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...