• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
Mol Cell Biol. Feb 1991; 11(2): 737–745.
PMCID: PMC359725

Repair of specific base pair mismatches formed during meiotic recombination in the yeast Saccharomyces cerevisiae.

Abstract

Heteroduplexes formed between DNA strands derived from different homologous chromosomes are an intermediate in meiotic crossing over in the yeast Saccharomyces cerevisiae and other eucaryotes. A heteroduplex formed between wild-type and mutant genes will contain a base pair mismatch; failure to repair this mismatch will lead to postmeiotic segregation (PMS). By analyzing the frequency of PMS for various mutant alleles in the yeast HIS4 gene, we showed that C/C mismatches were inefficiently repaired relative to all other point mismatches. These other mismatches (G/G, G/A, T/T, A/A, T/C, C/A, A/A, and T/G) were repaired with approximately the same efficiency. We found that in spores with unrepaired mismatches in heteroduplexes, the nontranscribed strand of the HIS4 gene was more frequently donated than the transcribed strand. In addition, the direction of repair for certain mismatches was nonrandom.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.8M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bishop DK, Andersen J, Kolodner RD. Specificity of mismatch repair following transformation of Saccharomyces cerevisiae with heteroduplex plasmid DNA. Proc Natl Acad Sci U S A. 1989 May;86(10):3713–3717. [PMC free article] [PubMed]
  • Bishop DK, Kolodner RD. Repair of heteroduplex plasmid DNA after transformation into Saccharomyces cerevisiae. Mol Cell Biol. 1986 Oct;6(10):3401–3409. [PMC free article] [PubMed]
  • Boeke JD, LaCroute F, Fink GR. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984;197(2):345–346. [PubMed]
  • Dohet C, Wagner R, Radman M. Repair of defined single base-pair mismatches in Escherichia coli. Proc Natl Acad Sci U S A. 1985 Jan;82(2):503–505. [PMC free article] [PubMed]
  • Donahue TF, Cigan AM. Genetic selection for mutations that reduce or abolish ribosomal recognition of the HIS4 translational initiator region. Mol Cell Biol. 1988 Jul;8(7):2955–2963. [PMC free article] [PubMed]
  • Donahue TF, Farabaugh PJ, Fink GR. The nucleotide sequence of the HIS4 region of yeast. Gene. 1982 Apr;18(1):47–59. [PubMed]
  • Fogel S, Mortimer R, Lusnak K, Tavares F. Meiotic gene conversion: a signal of the basic recombination event in yeast. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):1325–1341. [PubMed]
  • Hastings PJ. Measurement of restoration and conversion: its meaning for the mismatch repair hypothesis of conversion. Cold Spring Harb Symp Quant Biol. 1984;49:49–53. [PubMed]
  • Kramer B, Kramer W, Fritz HJ. Different base/base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch-repair system of E. coli. Cell. 1984 Oct;38(3):879–887. [PubMed]
  • Kramer B, Kramer W, Williamson MS, Fogel S. Heteroduplex DNA correction in Saccharomyces cerevisiae is mismatch specific and requires functional PMS genes. Mol Cell Biol. 1989 Oct;9(10):4432–4440. [PMC free article] [PubMed]
  • Kramer W, Kramer B, Williamson MS, Fogel S. Cloning and nucleotide sequence of DNA mismatch repair gene PMS1 from Saccharomyces cerevisiae: homology of PMS1 to procaryotic MutL and HexB. J Bacteriol. 1989 Oct;171(10):5339–5346. [PMC free article] [PubMed]
  • Lichten M, Goyon C, Schultes NP, Treco D, Szostak JW, Haber JE, Nicolas A. Detection of heteroduplex DNA molecules among the products of Saccharomyces cerevisiae meiosis. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7653–7657. [PMC free article] [PubMed]
  • Meselson MS, Radding CM. A general model for genetic recombination. Proc Natl Acad Sci U S A. 1975 Jan;72(1):358–361. [PMC free article] [PubMed]
  • Modrich P. DNA mismatch correction. Annu Rev Biochem. 1987;56:435–466. [PubMed]
  • Moore CW, Hampsey DM, Ernst JF, Sherman F. Differential mismatch repair can explain the disproportionalities between physical distances and recombination frequencies of cyc1 mutations in yeast. Genetics. 1988 May;119(1):21–34. [PMC free article] [PubMed]
  • Nag DK, Petes TD. Genetic evidence for preferential strand transfer during meiotic recombination in yeast. Genetics. 1990 Aug;125(4):753–761. [PMC free article] [PubMed]
  • Nag DK, White MA, Petes TD. Palindromic sequences in heteroduplex DNA inhibit mismatch repair in yeast. Nature. 1989 Jul 27;340(6231):318–320. [PubMed]
  • Nicolas A, Treco D, Schultes NP, Szostak JW. An initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. Nature. 1989 Mar 2;338(6210):35–39. [PubMed]
  • Orr-Weaver TL, Szostak JW, Rothstein RJ. Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6354–6358. [PMC free article] [PubMed]
  • Pukkila PJ, Peterson J, Herman G, Modrich P, Meselson M. Effects of high levels of DNA adenine methylation on methyl-directed mismatch repair in Escherichia coli. Genetics. 1983 Aug;104(4):571–582. [PMC free article] [PubMed]
  • Radding CM. Homologous pairing and strand exchange in genetic recombination. Annu Rev Genet. 1982;16:405–437. [PubMed]
  • Radman M, Wagner R. Mismatch repair in Escherichia coli. Annu Rev Genet. 1986;20:523–538. [PubMed]
  • Scherer S, Davis RW. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4951–4955. [PMC free article] [PubMed]
  • Symington LS, Petes TD. Expansions and contractions of the genetic map relative to the physical map of yeast chromosome III. Mol Cell Biol. 1988 Feb;8(2):595–604. [PMC free article] [PubMed]
  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. [PubMed]
  • White JH, Lusnak K, Fogel S. Mismatch-specific post-meiotic segregation frequency in yeast suggests a heteroduplex recombination intermediate. Nature. 1985 May 23;315(6017):350–352. [PubMed]
  • Williamson MS, Game JC, Fogel S. Meiotic gene conversion mutants in Saccharomyces cerevisiae. I. Isolation and characterization of pms1-1 and pms1-2. Genetics. 1985 Aug;110(4):609–646. [PMC free article] [PubMed]
  • Winston F, Chumley F, Fink GR. Eviction and transplacement of mutant genes in yeast. Methods Enzymol. 1983;101:211–228. [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...